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Abstract—The demand for real-time data services is increasing in many applications including e-commerce, agile manufacturing, and
telecommunications network management. In these applications, it is desirable to execute transactions within their deadlines, i.e., before
the real-world status changes, using fresh (temporally consistent) data. However, meeting these fundamental requirements is
challenging due to dynamic workloads and data access patterns in these applications. Further, transaction timeliness and data freshness
requirements may conflict. In this paper, we define average/transient deadline miss ratio and new data freshness metrics to let a
database administrator specify the desired quality of real-time data services for a specific application. We also present a novel QoS
management architecture for real-time databases to support the desired QoS even in the presence of unpredictable workloads and
access patterns. To prevent overload and support the desired QoS, the presented architecture applies feedback control, admission
control, and flexible freshness management schemes. A simulation study shows that our QoS-aware approach can achieve a near zero
miss ratio and perfect freshness, meeting basic requirements for real-time transaction processing. In contrast, baseline approaches fail
to support the desired miss ratio and/or freshness in the presence of unpredictable workloads and data access patterns.
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1 INTRODUCTION

HE demand for real-time data services is increasing in

many important applications including e-commerce,
online stock trading, agile manufacturing, sensor data
fusion, traffic control, target tracking, and telecommunica-
tions network management. In these applications, transac-
tions should be processed within their deadlines, i.e., before
the market, manufacturing, or network status changes, using
fresh (temporally consistent) sensor data' that reflect the
current real-world status. Existing (nonreal-time) databases
are poor at supporting timing constraints and temporal
consistency of data. Therefore, they do not perform well in
these applications.

Real-time databases need to execute transactions within
their deadlines using fresh data, but meeting these funda-
mental requirements is challenging. Generally, transaction
execution time and data access pattern are not known a priori,
but could vary dynamically. For example, transactions in
stock trading may read varying sets of stock prices, and
perform different arithmetic/logical operations to maximize
the profit considering the current market status. Transactions
can be rolled back and restarted due to data/resource
conflicts. Further, transaction timeliness and data freshness
can often pose conflicting requirements. By preferring user
requests to sensor updates, the deadline miss ratio is
improved; however, the data freshness might be reduced.

1. In this paper, we do not restrict the notion of sensor data to the data
provided by physical sensors. Instead, we consider a broad meaning of
sensor data. Any data item, whose value reflects the time-varying real-
world status, is considered a sensor data item.
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Alternatively, the freshness increases if updates receive a
higher priority [3].

To address this problem, we present a novel real-time
main memory database architecture called QMF (a QoS
management architecture for deadline Miss ratio and data
Freshness). QMF provides several QoS parameters to let a
database administrator (DBA) specify the desired miss ratio
and data freshness for a specific application. QMF applies a
feedback-based miss ratio control scheme since feedback
control is very effective to support the desired performance
when the system model includes uncertainties [13], [16], [23].
At each sampling instant, the feedback-based miss ratio
controller measures the miss ratio and computes the miss
ratio error, i.e., the difference between the desired miss ratio
and the measured one. Based on the miss ratio error, the
controller computes the control signal, i.e., the required
workload adjustment to react to the error. QMF can achieve
the desired miss ratio via series of reactions to reduce the error
evenif an individual reaction is not completely precise. When
overloaded, the freshness manager, which manages data
freshness in QMF, updates relatively less important sensor
data on demand or increase their update periods according to
the miss ratio control signal.> QMF also applies admission
control to incoming transactions under overload conditions.
By adapting update workloads before applying admission
control, QMF can admit (and process) more transactions.

In our earlier work [8], we presented an adaptive update
policy to balance potentially conflicting miss ratio and
freshness requirements. Initially, all data are updated
immediately when their new sensor readings arrive. Under
overload, some sensor data can be updated on demand to
improve the miss ratio as long as the target freshness,
perceived by the transactions that commit within their
deadlines, is supported. The adaptive update policy can

2. The freshness manager is an actuator from the control theory
perspective. We do not consider a separate controller for freshness
management, since miss ratio and data freshness requirements can conflict
leading to an unstable feedback control system that may oscillate between
many deadline misses and freshness violations.
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effectively balance miss ratio and data freshness require-
ments [8]. It contrasts to the existing database update policy
commonly accepted in the real-time database research such
as [3], [9], [17], which is fixed and not adaptable regardless
of the current system status. However, the adaptive update
policy has a potential disadvantage. Consider a case in
which real-time transactions with tight deadlines need to
access a sensor data object that is updated on demand. The
transactions may have to miss their deadlines waiting for
the on-demand update. Or, to meet their deadlines, they
may have to use a stale version of the data, outdated since
the last on-demand update, even though the chances are
small.? Neither is desirable.

To prevent potential deadline misses or stale data accesses
due to the delay for on-demand updates, we present an
alternative approach in which all data are updated immedi-
ately. In this approach, we present novel notions of QoD
(Quality of Data) and flexible validity intervals to manage the
freshness.* When overloaded, update periods of some sensor
data can be relaxed within the specified range of QoD to
reduce the update workload, if necessary. However, sensor
data are always maintained fresh in terms of flexible validity
intervals. Therefore, the age of sensor data is always
bounded. (A detailed discussion is given in Section 4.)

Real-time databases should determine the frequency of
sensor data updates considering the rate at which the real-
world status changes (or may change) [17]. For this reason, we
measured the average intertrade time of popular stock items
using the real-time NYSE trade information, which is
streamed into an online trading laboratory at the University
of Virginia. From these studies, we derived a range of sensor
update periods used for our simulation study (discussed in
detail in Section 6). Unlike our work presented in this paper,
existing real-time database work such as [1], [3], [9] do not
consider actual data freshness semantics, mainly determined
by the update frequency, for performance evaluation.

Based on performance evaluation results, we show that
QMF can support stringent QoS requirements for a large
range of workloads and access patterns. QMF achieves a
near zero miss ratio and perfect freshness even given
dynamic workloads and data access patterns.” In contrast,
several baseline approaches, including best existing algo-
rithms for timeliness and freshness trade-off in real-time
databases [3], fail to support the specified miss ratio and/or
data freshness. Further, our approach achieves a higher
throughput than the baselines. This is because QMF can
avoid overload conditions, which can cause many deadline
misses, by carefully adapting the system behavior in the
feedback loop as discussed before.

3. In [8], we show that our approach can support the 98 percent
perceived freshness. A detailed description of perceived freshness is given
in Section 3.

4. In [8], we introduced the notion of QoD. We adapt the definition of
QoD for the new flexible freshness management scheme presented in this
paper.

5. Since QMF is evaluated for a large range of workloads and access
patterns, while handling a large number of transactions for statistical
confidence, we consider the results are valid although our real-time
database model is approximate based on aggregate system parameters such
as the miss ratio. A finer grain modeling considering individual transaction
characteristics, without requiring a priori knowledge about workloads, is
reserved for future work.
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The rest of the paper is organized as follows: Section 2
describes our real-time database model. Flexible sensor
update schemes are presented in Sections 3 and 4. In
Section 5, our QoS management architecture including the
feedback control scheme is described. The performance
evaluation results are presented in Section 6. Related work
is discussed in Section 7. Finally, Section 8 concludes the
paper and discusses future work.

2 REAL-TIME DATABASE MODEL

In this section, we describe the database model, transaction
types, deadline semantics, and average/transient miss ratio
considered in this paper. We consider a main memory
database model, in which the CPU is considered the main
system resource. Main memory databases have been
increasingly applied to real-time data management such
as stock trading, e-commerce, and voice/data networking
due to decreasing main memory cost and their relatively
high performance [3], [19].

We classify transactions as either sensor updates or user
transactions. Periodic sensor updates are write-only trans-
actions that capture the continuously changing real-world
state. User transactions can read sensor data and read /write
non-sensor data such as PIN numbers that do not have
temporal consistency constraints. User transactions can also
execute arithmetic/logical operations based on the current
real-world state reflected in the real-time database to take
an action, if necessary. For example, process control
transactions in agile manufacturing may issue control
commands considering the current process state, which is
monitored by periodic sensor updates.

We apply firm deadline semantics, in which transactions
add value to the system only if they finish within their
deadlines. Hence, a transaction is aborted upon its deadline
miss. Firm deadline semantics are common in many real-
time database applications. A late commit of a real-time
transaction may incur the loss of profit or product quality,
resulting in wasted system resources, due to possible
changes in the market or manufacturing status.

The deadline miss ratio is one of the most important
performance metrics in real-time applications. For admitted
transactions, the deadline miss ratio is:

#Tardy
#Tardy + #Timely

MR =100 x

(%),

where #Tardy and #Timely represent the number of
transactions that have missed and met their deadlines,
respectively. The DBA can specify a tolerable miss ratio
threshold, e.g., 1 percent, for a specific real-time database
application. As discussed before, database workloads and
data access patterns might vary dynamically. Therefore, we
assume that some deadline misses are inevitable and a
single deadline miss does not incur a catastrophic con-
sequence. A few deadline misses are considered tolerable
unless they exceed the threshold specified by a DBA.
Long-term performance metrics, e.g., average miss ratio,
are not sufficient to specify the desired performance of
dynamic systems whose performance could change signifi-
cantly in a relatively short time interval [13]. For this reason,
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Fig. 1. Definition of overshoot (V) and settling time (7) in real-time
databases.

transient performance metrics such as overshoot and settling
time shown in Fig. 1 are adopted from control theory to
specify the desired target performance of real-time systems:

e  Overshoot is the worst-case system performance in
the transient system state. In this paper, it is
considered the highest miss ratio over the miss ratio
threshold (M R;) in the transient state.

e  Settling time is the time for a transient miss ratio
overshoot to decay. After T, the real-time database
should enter the steady state, in which the miss ratio
is within the range [0, MR, 4+ 0.01 x MR].

Our approach also provides data freshness metrics to
specify the desired real-time database QoS. For the clarity of
presentation, we defer the related discussion to Sections 3 and
4,inwhich, we present two alternative approaches for flexible
freshness management. In the remainder of this paper, we
follow a convention that classifies QMF as QMF-1 or QMEF-2
according to the selected freshness management scheme.

3 FLEXIBLE FRESHNESS MANAGEMENT: QMF-1

In this section, we discuss data freshness metrics and describe
a cost-benefit model for sensor data updates. Using this
model, we present an adaptive update policy called QMF-1.

3.1 Freshness Metrics

In real-time databases, validity intervals are used to
maintain the temporal consistency between the real-world
state and sensor data in the database [9], [17]. A sensor data
object O; is considered fresh, i.e., temporally consistent, if
(current time — timestamp(O;) < avi(0;)), where avi(O;)
is the absolute validity interval of 0,.° For O;, we set the
update period P, = 0.5 - avi(O;) to support the sensor data
freshness, similar to [9], [17]. To manage data freshness in
an adaptive manner, we consider two key freshness metrics
as follows:

e  Database Freshness, also called QoD, is the ratio of fresh
(sensor) data to the entire data in a real-time database.

e  Perceived freshness (PF) is defined for the data
accessed by timely transactions. Let Nycccssed T€pre-
sent the number of data accessed by timely transac-
tions. Let Ny,.y, stand for the number of fresh data
accessed by timely transactions.

6. Real-time databases may include derived data such as stock composite
indexes. In this paper, we do not consider the derived data management.
We reserve this for future work.

Perceived Freshness = 100 -

Nfresh (%)
Naccessed

We support the desired data freshness in terms of
perceived freshness since we apply firm deadline seman-
tics. When overloaded, the QoD (database freshness) could
be traded off to improve the miss ratio as long as the target
perceived freshness is not violated. This approach could be
effective considering potentially high update workloads,
e.g., stock price updates during the peak trade time [3],
which may cause many deadline misses.

3.2 Cost-Benefit Model for Updates and Adaptive
Update Policy
To balance the update and transaction workload efficiently,
we introduce a cost-benefit model for sensor data updates
as follows: The cost is defined as the update frequency of a
sensor data object. Intuitively, the more frequent is the
update, the higher is the cost. We assume that the frequency
of periodic updates is known to the database system.” To
consider the benefit, access frequency is measured for each
data object. Updating a frequently accessed data can
produce a relatively high benefit. To quantify the cost-
benefit relationship, we define Access Update Ratio (AUR)
for a sensor data object O;, which represents the importance
of being fresh:
. AFT[i]

AURJi) = UF]’ (1)
where AF[i] and UFYJi] are defined in Table 1, which
summarizes the notations used in the remainder of this
section.

Unfortunately, the access frequency may have a large
deviation from one sampling period to another. To smooth
the potentially large deviation, we take a moving average of
the access frequency (AF) for O; in the kth sampling period:

SAFk[Z] =a- SAFk;,l[’L'] + (1 — a) . AFk[Z], (2)

where 0 < a < 1. As the value of a gets closer to 0, only the
recent access frequencies are considered to compute the
moving average. In contrast, the wider horizon will be
considered to compute the moving average as a gets closer
to 1.
Since the UFi] in a sampling period is known, we can
compute AUR for O;:
. SAF[i]
AURJi] = UFl] (3)
If AURJi] > 1, the benefit of updating O; is worth the cost
since O; is accessed at least as frequently as it is updated.
We call O; hot, i.e., O; € Dy, if its AUR > 1. Otherwise, we
call O; cold, i.e., O; € D.yy. Note that D = Dj,,; U D, ;g and
Dpot N Deoig = D. The notion of AUR does not depend on a
specific access pattern or popularity model. It can be
derived simply from the update and access frequency for
each data object. Therefore, it greatly simplifies our cost-

7. We can also apply our cost-benefit model to aperiodic updates by
monitoring the update frequency, similar to the access frequency monitor-
ing (discussed in the remainder of this subsection). However, in this paper,
we only consider periodic updates that are commonly adopted in real-time
databases to support the temporal consistency of sensor data [9], [17].
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TABLE 1
Notations for QMF-1

Notation Description

AURY{] Access update ratio of O;

AF[i] Access frequency of O;

UFi] Update frequency of O;

SAF[i] Smoothed access frequency of O;

D Set of the entire sensor data in a real-time database

Dhot (Deota) Set of hot (cold) sensor data items

Dimm (Doa) Set of sensor data updated immediately (on demand)

Deotd_imm Do1a N\ Dimm

AW Required workload adjustment computed in the feedback control loop
AW, Required workload adjustment after (a) QoD degradation(s), if any
PF, Target perceived freshness

Min AUR(X) | Function returning the data item with the smallest AUR in a given set X
SW; CPU utilization saved by degrading the QoD of O;

AET(0;) Average execution time needed to update O;
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benefit model, and makes the model robust against the
potential unpredictability in data access patterns.

From the cost-benefit model, we observe that it is reason-
able to update hot data immediately. If a hot data item is out-
of-date when accessed, a multitude of transactions may miss
their deadlines waiting for the update. Further, updating hot
data on demand may not decrease the update workload
because SAFi] > UFi] for VO; € Dy, as discussed before.
Therefore, Dy, N D,q = ). Alternatively, it may not be
necessary toimmediately update cold data when overloaded.
Only a few transactions may miss their deadlines waiting for
the update. Under overload, we can save the CPU utilization
by updating some cold data on demand.

Initially, every datais updated immediately,i.e., Djy, = D
and D,; = @. At each sampling instant, the feedback con-
trollers compute the required workload adjustment, called
AW, to support the desired miss ratio. (A detailed discussion
of feedback control is given in Section 5.) When overloaded,
AW becomes negative requiring the workload reduction.
Accordingly, the freshness manager reduces the update
workload, if the current PF > PF;, as described in Fig. 2.

As shown in Fig. 2, the CPU utilization saved due to a
QoD degradation for a single data item O; is approximately:

§Wi = AET(0;) - [UF[i] — SAFJi]], (4)

where AET(0O;) is the average execution time to update O;.
A DBA can measure AET(O;), preferably, offline to
minimize the overhead. Note that we use the average
execution time in (4), since the update time of sensor data,
e.g., radar images, can be time-varying. If we consider the
worst case update execution time, the miss ratio can be
improved at the cost of potential underutilization. Or, a
large miss ratio overshoot may occur when the update
execution time is underestimated. Generally, determining
optimal values of real-time database model parameters
such as AET; or 6éW; can be very hard, if ever possible,
without a priori knowledge of workloads. As discussed
before, this is the key motivation of applying feedback
control and dynamic workload adaptation techniques to
database QoS management in QMF.

We need to switch the update policy back to the
immediate one for some cold data when the target
perceived freshness is violated. We call this QoD upgrade.
To upgrade the QoD for O;, the extra CPU utilization of 6W;
in (4) is required to switch the update policy of O, back to
the immediate policy. The QoD can be upgraded as long as
0W; is available and a certain upgrade bound is not reached
yet to avoid a miss ratio overshoot in the next sampling
period as a result of excessive QoD upgrades. Due to space
limitations, we refer readers to [7], [8] for more details about
QoD upgrade and degradation.

4 FLEXIBLE FRESHNESS MANAGEMENT: QMF-2

In this section, we consider an alternative approach for
freshness management called QMEF-2. Novel notions of QoD
and flexible validity intervals are discussed. A detailed
description of QoD parameters and flexible freshness
management is also given.

4.1 Quality of Data and Flexible Validity Intervals

In QMEF-2, all sensor data are updated immediately to avoid
the possible deadline misses or stale data accesses due to
on-demand updates as discussed before. When overloaded,
the update periods of relatively less critical sensor data, e.g.,
data with low AUR values in stock trading or slow moving

AW,py = AW
Doid_imm = Decotd N\ Dimm
while (AW, < 0 and PF > PF; and D o1 imm 7 D )
{
0i = Min_AUR(D o1 imm)
Deotd_imm = Deotd imm — {Oi}
Dimm = Dimm — {Oi}
Dyg = Doa U{0;}
AWy = AW + 8W; where 8W; = AET(0;) - [UF[i] — SAF[i]]
AW = AW,

Fig. 2. QoD degradation in QMF-1 under overload conditions.
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TABLE 2
Notations for QMF-2

Notation Description
P, Minimum update period of O; before any QoD degradation

inew New update period after a QoD degradation for O;
P; Current update period of O; (Initially, P; = P,,,,, = P,,.,)
fVinew(O;) | New flexible validity interval after a QoD degradation for O;
Degr Set of sensor data whose QoD can be degraded
Max-Degr | Degree of maximum allowed QoD degradation
Step-Size Degree of a unit QoD degradation
W, ! CPU utilization saved by degrading the QoD of O;

friendly helicopters in target tracking, can be increased to
improve the miss ratio.” We assume that the relative
importance of data is available to a DBA working for a
specific application, e.g.,, a financial trading or target
tracking. This is a reasonable assumption: The AUR of
stock prices, for example, can be available to (or measured
by) the DBA at least to distinguish between hot and cold
data. Also, the relative importance of aircraft must be
available in target tracking.” Given the assumption, we
define the current QoD when there are N sensor data
objects in a real-time database:

N
pprce

i=1 " ‘new

QoD = F;—O] (%), (5)

where P, , and P, , are defined in Table 2, which briefly
describes the notations used in this section. When there is no
QoD degradation, the QoD =100 percentsince P, = P, for
every sensor data object O; in the database. The QoD
decreasesas P, increases. Using this metric, we can measure
the current QoD for sensor data in real-time databases.

To maintain the freshness of a sensor data item after a
possible QoD degradation, we define a notion of flexible
validity intervals (fvi). Initially, fvi = avi for all data. Under
overload, the update period P, for a less critical data object
O; can be relaxed. After the QoD degradation for O;, we set
fVlnew(0;) =2- P, to maintain the freshness of O; by
updating it at every P, . Accordingly, O; is considered
fresh if (current time — timestamp(O;) < fVinew(O;)). Since
all sensor data are maintained fresh in terms of (flexible)
validity intervals, QMF-2 supports the 100 percent per-
ceived freshness; that is, the age of each sensor data is
always bounded by fvi. Therefore, the QoD defined in (5) is
the only freshness metric in QMF-2.

new

4.2 QoD Parameters and QoD Management

A DBA, who is aware of application specific real-time data
semantics, can specify the desired QoD using the following
QoD parameters.

®  Dgeg: A DBA can specify a certain set of sensor data
D egr, €.g., the set of data with AUR < 1, whose QoD

8. Task period adjustment is previously studied to improve the miss ratio
in real-time (non-database) systems such as [11]. However, database issues
such as data freshness are not considered in these work.

9. Ideally, precise rankings of data importance can optimize the QoD by
degrading the QoD of the least critical data item first, if necessary.
However, our approach can still manage the QoD in a flexible manner even
given an approximate information of data importance (at the cost of
possibly suboptimal QoD).

can be degraded, if necessary, to support the target
miss ratio.
o Max-Degr: When Dy, # @, a DBA can specify
Max-Degr to avoid an indefinite QoD degradation.
For asensor data object O; € Dy, P, < Max-Degr -
P, . afteraQoD degradation. Dy, and Max-Degr can
determine the worst possible QoD. For the clarity of
presentation, let Fized-QoD =1 — ]Ddcg,,| /|D| repre-
sent the fraction of D (the setof the entire sensor datain
areal-time database) whose QoD can not be degraded.
When Fized-QoD = 0.7 and Maxz-Degr = 4, for ex-
ample, the lowest possible QoD is 77.5% = 100 -

[Fized — QoD + (1 — Fized — QoD)/Max — Degr]|%
=100 (0.7 +0.3/4)%

for

min

when the current update period P
every O; € Dieg.

e Step-Size: A DBA can also specify Step-Size for
graceful QoD degradations, if any. For example,
when Step-Size = 10 percent, P, A = 1.1- P, after a
QoD degradation for O;(€ D) to avoid a sudden
QoD degradation.

Our QoD parameters can effectively reflect QoD require-
ments in real-time database applications. For example,
financial trading tools such as Moneyline Telerate Plus [14]
usually allow users to specify acceptable periods ranging
between 1 minute and 60 minutes to monitor stock prices.
Further, our approach can adjust the QoD within the
specified QoD range, if necessary, to improve the miss ratio.

When overloaded, ie., AW <0, the QoD can be
degraded as described in Fig. 3. The update period of the
least critical data object O; (€ Dye,r) is increased by the Step-
Size, if possible. The QoD degradation continues until the
required workload adjustment is achieved, i.e., AW, > 0,
or Dgegr = ©. (When O;’s QoD can not be degraded any
further, O; is removed from Dy, as shown in Fig. 3.)

Note that the computation of 6W;’, the CPU utilization
saved by degrading the QoD for O;, as shown in Fig. 3, can
include smaller errors compared to the computation of 6W;
in QMF-1 (4) using the smoothed access frequency (SAF[i)),
which may vary from time to time.

—4.P

new

5 ARCHITECTURE FOR Q0S MANAGEMENT OF
REAL-TIME DATA SERVICES

In this section, a QoS specification is given to illustrate the
applicability of our approach. The QMF architecture is
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AWy = AW
while (AW, < 0 and Dy, # ©)
{

/* Increase P; for O; with the least importance. */
P, = (1+ Step-Size) - P;
if (P,,,, < P,,, - Max-Degr)
AW,y = AW + 8W; ' where dW; ' =
AW = AW,
P,=P,,,
fVinew(Oi) =2-B

__AET(0)

AET(0;)
IJi

inew

else
Ddegr = Ddegr - {oi}
i++

}

Fig. 3. QoD degradation in QMF-2 under overload conditions.

described. An overall behavior of QMF is described, followed
by a detailed discussion about the system components
consisting the architecture. The real-time database/feedback
control models and controller tuning process needed to
support the desired QoS are described in detail.

5.1 QoS Specification
We give a stringent QoS specification called QoS-Spec by
mimicking a DBA who can specify the desired miss ratio
and freshness as follows:

e Miss Ratio: The average miss ratio is desired to be
below 1 percent to minimize the potential loss of
profit or product quality even given dynamic work-
loads and access patterns. An overshoot needs to be
below 30 percent to support the consistent real-time
performance. Therefore, the transient miss ratio
should not exceed 1.3% = 1- (1 4 0.3)%. The settling
time should be shorter than 40sec, e.g., a reasonable
think time between trades.

e Freshness Requirements: For QMF-1, we set the
target perceived freshness PF; = 98%. For QME-2,
we set Max-Degr= 4 and Step-Size= 10 %. We do not

fix Dygegr (and Fixed-QoD), but decrease the cardin-
ality of Dge4 (i.e., increase Fixed-QoD) to make the
QoS-Spec more stringent in Section 6.

5.2 QMF Architecture and Interactions among Key
System Components

Fig. 4 shows our QoS management architecture. The transac-
tion handler supports the concurrency control, freshness
check upon each sensor data access, and scheduling for real-
time transaction processing. The monitor measures the
current system status such as miss ratio, CPU utilization,
and PF/QoD at each sampling instant. Based on the current
system state, the miss ratio and utilization controller compute
the required workload adjustment AW to support the
specified miss ratio without severely underutilizing the
CPU. The QoD manager and admission controller adapt the
workload as required by the feedback controllers, if neces-
sary, to support the target miss ratio while meeting the
freshness requirements. The utilization threshold manager
applies a computationally lightweight method to closely
approximate the potentially time-varying utilization bound
for real-time transaction scheduling. Due to space limitations,
we refer readers to [7] for more details.

The overall behavior of QMF is described in Fig. 5. If
AW >0, i.e., the current miss ratio is below the threshold
(1 percent in QoS-Spec), and the freshness requirement is also
met, more transactions are admitted to avoid potential
underutilization. When the system is overloaded, i.e.,
AW < 0, the workload should be reduced. To do this, the
QoD can be reduced if Deoiq_imm # @ in QMF-1, or Dyey # O
in QMF-2.

When AW < 0 and the QoD can not be degraded further
to support the target freshness, we apply admission control
to prevent overload. Admission control is known to be
effective to prevent database thrashing due to severe data/
resource contentions [21]. It can also improve the miss ratio
of real-time transactions significantly, especially when
overloaded [8], [9]. In QMF, an incoming transaction is
admitted to the system if the requested CPU utilization is
currently available. The current CPU utilization can be
estimated by adding the CPU utilization estimates of the
previously admitted transactions.

Adapted Update Policy / Period

User

Transasctions
—|

Admission
Controller

Q,

S Miss Ratio
Vtiization MR/Utilization )
Controllers Utilization Monitor
Manager
AW PF/QoD

AW ,‘Bw4| QoD Manager }'

Dispatched Transaction Handler

Terminated
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0 e
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Fig. 4. Real-time database architecture for QoS management.
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1. At each sampling period, measure the miss ratio (MR), freshness, and CPU utilization. In QMF-1, also
collect access statistics and compute AUR.

2. The miss ratio and utilization controllers compute their control signals called AWyg and AWy, respec-
tively. Set AW = Min(AWyr,AWy ) for a smooth transition from a system state to another. Based on
AW, perform one of the following alternatives in either QMF-1 or QMF-2.

QMF-1:
e If AW > 0 and PF > PF;, admit more transactions to prevent potential underutilization.

o If AW < 0 and PF > PF;, degrade the QoD and adjust AW,,,, as described in Figure 2. Apply admission
control if AW,,,, < 0 after all possible QoD degradations, if any.

e If AW > 0 and PF < PF;, upgrade the QoD as described in Section 3.
e If AW < 0 and PF < PF,, drop incoming transactions until AW becomes positive at a later sampling

QMF-2:

period due to the termination of some transactions currently in the system.

e If AW > 0, admit more transactions to avoid potential underutilization.

o If AW < 0, degrade the QoD and adjust AW,,,, as described in Figure 3. Apply admission control if
AWy, < 0 after all possible QoD degradations, if any.

Fig. 5. QoS management for miss ratio and freshness support.

5.3 Transaction Handler

The transaction handler consists of a concurrency controller
(CC), a freshness manager (FM), and a transaction scheduler
(TS). The CC uses two phase locking high priority (2PL-HP)
[1]in which alow priority transaction is aborted and restarted
upon a conflict to avoid priority inversions. 2PL-HP is also
deadlock free when transaction priorities are unique. If
several transactions have the same priority, we let the
transaction that has first been admitted to the system get the
required lock(s)."” The FM checks the freshness before
accessing a data item using the corresponding avi (or fui if
there has been a QoD degradation in QMEF-2). It blocks a user
transaction if an accessed data item is currently stale. The
blocked transaction(s) will be transferred from the block
queue totheready queueassoonas the update of the stale data
item commits.

The TS schedules transactions in one of two ready queues,
ie., Qo and @ as shown in Fig. 4. A transaction in )| can be
executed if there is no ready transaction in @)y, and can be
preempted when a new transaction arrives at (). In each
queue, transactions are scheduled in an EDF (Earliest Dead-
line First) manner. To support the target freshness, all
immediate updates are scheduled in Q. User transactions
and on-demand updates, if any, are scheduled in Q).

5.4 Feedback Control

In this section, we model real-time main memory databases
in terms of the CPU utilization and miss ratio. We need both
models because the miss ratio saturates at 0 percent when
the system is underutilized. In contrast, the utilization

10. In this paper, we do not consider optimistic concurrency control
policies. Several early studies about real-time databases such as [4], [6]
showed contradicting results concerning the performance of optimistic and
pessimistic concurrency control schemes. Later, Lee and Son [10] found that
the performance of real-time concurrency control mechanisms vary
depending on several factors such as the resource availability and deadline
semantics. Especially, they showed that lock based approaches achieve a
better performance in a resource constrained environment.

saturates at 100 percent when the system is overloaded.
Based on these models, we apply control theoretic
approaches to support the desired miss ratio, while
avoiding the CPU underutilization, similar to [13]. The
utilization and miss ratio models, closed loop models
applying feedback control, and controller tuning using the
Root Locus method [16] to support the desired average/
transient miss ratio (QoS-Spec) are discussed as follows:

5.4.1 Utilization Model

To apply control theoretic approaches, one should model
the controlled system such as real-time databases by
transfer functions that describe the relation between the
control input, e.g., workload adjustment, and system
output, e.g., resulting utilization or miss ratio, via differ-
ential or difference equations [16]. In this section, we model
the utilization of real-time databases using difference
equations in the discrete time domain where most
computational systems operate. The notations used to
describe the utilization model are summarized in Table 3.

When the workload is lower than the utilization threshold,
all transactions can finish within their deadlines. Thus, the
miss ratio is zero. The utilization at the kth sampling period is:

Uk) =U(k - 1)+ G, - AWy(k — 1), (6)

where AWy (k—1) is the workload adjustment at the
previous sampling period due to admitting more incoming
transactions (or upgrading the QoD, if necessary, to support
the target perceived freshness in QMF-1) to avoid severe
underutilization. Hence, (6) is the utilization model show-
ing the relation between the input AWy (k — 1) and output
U(k) in the discrete time domain.

Since the workload adjustment may not be precise due to
potential errors in execution time estimates, used for
admission control, the actual workload adjustment is G, -
AWy (k — 1) in (6), where G, is called the utilization gain in
this paper. In fact, the relation between U (k) and AWy (k — 1)
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TABLE 3
Notations for the Utilization Model

Notation Description

U (k) Ulilization measured at the kth sampling period

G, Utilization gain

Gy Max{G,}

AWy (k—1) | Workload adjustment performed at the (k— 1)th sampling period to avoid underutilization

Ty (z) Transfer function of the utilization model

TABLE 4
Notations for the Miss Ratio Model

Notation Description
M(k) Miss ratio measured at the kth sampling period
G Miss ratio gain
Gy Max{G,}
AWyr(k—1) | Workload adjustment performed at the (k — 1)th sampling period to support the target miss ratio
Tu(z) Transfer function of the miss ratio model

may not be linear since G, can be time-varying. To linearize
the utilizationmodel, wereplace G, with Gy = Maz{G,} = 2
by assuming that the actual execution time is twice the
estimated one in the worst case.

Next, we take the z-transform of (6) and derive the transfer
function for the utilization model that describes the relation
between the input, i.e., AWy (k — 1), and output, i.e., U(k).
The ztransform is a commonly used technique in digital
control developed in the discrete time domain. It transforms
difference equations into equivalent algebraic equations that
are easier to manipulate. Although a complete review of
z-transform is beyond the scope of this paper, we present one
key property useful to manipulate the difference equations
for our utilization and miss ratio models. Consider a sampled
variable z, whose samples are represented by
z[1],z[2],z[3],..., etc,; that is, z[k] denotes the kth sample.
Let the z-transform of z[k] be X(z), then the z-transform of
z[k —n] is 27" X(z). By applying this property to (6), we get
the utilization model after some algebraic manipulation:

Gu
z—1

U(z) = AWy (2). (7)

Therefore, the transfer function of the utilization model is:

Ty(s) = 2 0

5.4.2 Miss Ratio Model

When the workload is higher than the utilization threshold,
i.e., the real-time database is overloaded, transactions begin
to miss their deadlines, while the utilization saturates at
100 percent as discussed before. The utilization model can not
consider the situation in which the workload increases
causing deadline misses. Therefore, we also need to model
real-time databases in terms of miss ratio. The notations used
to describe the miss ratio model are summarized in Table 4.

When overloaded, the miss ratio at the kth sampling
period is:

M(k) = M(k—1) + Gy, - AWyg(k — 1), 9)

where AWy r(k — 1) denotes the workload adjustment, via
admission control and/or QoD degradation, performed at
the previous sampling period to reduce the miss ratio. Thus,
(9) shows the relation between the input AWyr(k — 1) and
output M (k) of the miss ratio model.

The miss ratio M (k) may not increase linearly as the
workload increases. Therefore, the missratiogain G,,, = % ,
i.e,, ffiss Ratio Increase may vary from time to time. To linearize
the miss ratio model, we replace G,, with Gy = Maz{G,,},
which can be experimentally derived. More specifically, we
have measured the average miss ratio for loads increasing
from 60 to 200 percentby 10 percent toidentify the (simulated)
real-time database system in terms of miss ratio. (A detailed
description of workloads is given in Section 6.) To model the
worst case, all incoming transactions are admitted to the
system and the QoD is not degraded regardless of the current
system status. From these experiments, we have derived
Gy = 1.523 when the load increases from 110 to 120 percent.
Toderive G7,a DBA can apply application specific workload
traces ranging between nominal and peak loads. QMF can
support the desired miss ratio as long as the workload does
not exceed the peak load used for the system identification. In
summary, a DBA needs to 1) specify the target miss ratio and
freshness,2) measure the average time for sensor data updates
(Section 3), and 3) identify the system in terms of G ;.

By taking the z-transform of (9) and doing some algebraic
manipulation, we get:

_ Gy

M(z) po—

Consequently, the transfer function of the miss ratio
model is:

G

T]\,j(Z) = Z—1 .

(11)

5.4.3 Closed Loop Models and Controller Tuning
Fig. 6 shows the closed loop (i.e., feedback-based) miss ratio
and utilization controllers. Especially, we apply PI (propor-
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Fig. 6. Miss ratio/utilization controllers. (a) Utilization controlloop.
(b) Miss ratio control loop.

tional and integral) controllers to manage the miss ratio and
utilization."

Using the PI controller, the miss ratio control signal, i.e.,
the required workload adjustment to support the specified
miss ratio, at the kth sampling period is:

k

i=1

(12)

where KP and KI, also described in Table 5, are propor-
tional and integral control gains that need to be tuned to
support the desired average/transient miss ratio. The
performance error Ejg(i), which is the input to the PI
controller needed to compute the output AWyr(k) at the
kth sampling period, is the difference between the miss
ratio threshold and the miss ratio measured at the ith
sampling period where 1 <7 < k.12

From (12), we can derive a computationally more
efficient form of a PI controller:

AWMR(,ZC) :AVVMR(IC — ].)

From this, we can derive the transfer function of a PI
controller, which shows the relation between the input
Eyr(2) and output AW, r(2), via the z-transform and some
algebraic manipulation:

a(z— ) _ _ 1
ﬁwhereapr(KI+1)andﬁfKI+1.

(14)

C(z) =

At each sampling instant, we set the current control
signal AW = Minimum(AWr, AWy) to support a smooth

11. We use PI controllers since a P controller alone can not cancel the
steady state error [16]. Via simulation, we also verified that the CPU is
underutilized when P controllers are used. In this paper, we do not consider
more complex controllers such as a PID controller because our PI controllers
meet QoS-Spec.

12. The PI controller for utilization control is similar to this equation
except that Ey(k), i.e., the difference between the target utilization and the
current utilization, is used to compute the required workload adjustment
AWy (k) to achieve the target utilization. Due to space limitations, we only
present the miss ratio controller.

transition from one system state to another, similar to [13].
When an integral controller is used together with a
proportional controller, the performance of the feedback
control system can be improved. However, care should be
taken to avoid erroneous accumulations of control signals
by the integrator, which may incur a substantial overshoot
later. To address this problem, we apply the integrator
antiwindup technique [16]. At each sampling period, turn
off the miss ratio controller’s integrator if AWy < AWy,
since the current AW = AW}. Otherwise, turn off the
utilization controller’s integrator.

When the transfer functions of a controller and a controlled
system such as a real-time database are X(z) and Y'(z), the
closed loop transfer function is % [16]. By substituting
the transfer functions for the utilization model of (8) (miss
ratiomodel of (11)) and PI controller of (14) into this equation,
we get the closed loop transfer functions for utilization and
miss ratio feedback control, respectively,

B(s) = s (19)
Dy(2) =) T (2) (16)

T 1+ C(R)Tu(2)

Given a closed loop transfer function, one (with basic
knowledge about control theory) can determine the
performance of the feedback control system by selecting
the sampling period and locating poles, i.e., real/imaginary
roots of the denominator of the corresponding closed loop
transfer function [16]. Frequent sampling could improve the
transient performance such as overshoot and settling time.
However, too frequent sampling could cause a sudden QoD
degradation in our approach, especially when overloaded.
For these reasons, we selected a relatively long sampling
period, i.e., 5 seconds.

When the sampling period and closed loop transfer
function are given, one can apply the Root Locus method
[16] to locate the poles graphically.” In this way, one can
tune the corresponding feedback controller. Using the Root
Locus method, we locate poles at 0.75 & 0.112¢ to support
the desired overshoot and settling time specified in QoS-
Spec. Since these poles are inside the unit circle, the
feedback control system is stable according to control
theory [16]. The corresponding KP = 0.139 and KI = 0.176
for the miss ratio controller. KP = 0.212 and KI = 0.176 for
the utilization controller.

6 PERFORMANCE EVALUATION

For performance evaluation, we have developed a real-time
database simulator that models the real-time database
architecture depicted in Fig. 4. Each system component in
Fig. 4 can be selectively turned on/off for performance
evaluation purposes. The main objective of our perfor-
mance evaluation is to show whether or not our approach
can support the target miss ratio and freshness (described in
QoS-Spec) even in the presence of a wide range of

13. Note that modeling and deriving transfer functions are independent
from the Root Locus method. The Root Locus method is only one of several
ways to tune a feedback controller by locating poles given the closed loop
transfer function and sampling period.
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TABLE 5
Notations for the Closed Loop Models
Notation | Description
KpP Proportional control gain
KI Integral control gain
Eymgr(k) | Miss ratio error at the kth sampling period
Dy (z) Transfer function of the feedback-based utilization controller
Dy (z) Transfer function of the feedback-based miss ratio controller
TABLE 6
Average Intertrade Times for S&P Stock Items
Stock Item Item; Itemy Itemg Ttemy ITtems Itemg
Average Time | 189ms 4.41sec 8.84sec 16.89sec  22.03sec  25.99sec

unpredictable loads and access patterns. In this section, we
discuss the simulation model, describe baseline approaches
for performance comparison purposes, and present the
performance evaluation results.

6.1 Simulation Model

In our simulation, we apply workloads consisting of sensor
data updates and user transactions described as follows.

6.1.1 Sensor Data and Updates

As discussed before, real-time databases usually monitor the
current real-world state using periodic updates, e.g., periodic
sensor readings and stock price tracking. Therefore, the range
of data update periods is a main factor to determine data
freshness semantics. To derive an appropriate range of
update periods, we have studied the real-time trace of NYSE
stock trades streamed into the Bridge Center for Financial
Markets at the University of Virginia. From 3 June 2002 to 26
June 2002, we measured the average time between two
consecutive trades for tens of S&P 500 stock items. In Table 6,
most representative ones are presented. (The other stock
items not presented in Table 6 showed similar intertrade
times.) As shown in Table 6, the shortest average intertrade
time observed is 189ms for Item;, while the longest one
observed is 26sec for Itemg. (We have deleted the actual stock
symbols for privacy purposes.)

From this study, we determined the range of sensor update
periods for our simulation as shown in Table 7. For each
sensor data object O;, its update period (F;) is uniformly
selected in a range (100ms, 50 seconds). The shortest update
period selected for our experiments, i.e., 100ms, is approxi-
mately one half of the average inter-trade time of Item; shown
in Table 6. In contrast, the longest update period, i.e.,
50 seconds, is approximately twice the average inter-trade
time of Items to model a wider range of update periods.

As shown in Table 7, there are 2,000 data objects
(1,000 sensor data objects) in our simulated real-time
database. We intentionally model a small database usually
incurring a high degree of data contention [1]. As a result,
supporting the desired miss ratio and freshness could be
relatively hard. Each sensor data object O; is periodically
updated by an update stream, Stream;, which is associated
with an estimated execution time (EET;) and an update
period (P;) where 1 <i<1,000. EET; is uniformly dis-
tributed in a range (3ms, 6ms). Note that FET; includes not
only memory access time but also raw sensor data

processing time, e.g., radar image processing time. Upon
the generation of an update, the actual update execution
time is varied by applying a normal distribution
Normal(EET;,/EET;) to Stream; to introduce errors in
execution time estimates. The total update workload is
manipulated to require approximately 50 percent of the
total CPU utilization when the perfect QoD is provided.

6.1.2 User Transactions

A source, Source;, generates a group of user transactions
whose interarrival time is exponentially distributed. Source;
is associated with an estimated execution time (£ ET;) and an
average execution time (AET;). We set EET; =
Uni form(5ms,20ms), as shown in Table 8. We selected this
range of execution time to model a high performance main
memory database. For example, TimesTen [19], a commercial
main memory database system, can handle approximately
1,000 transactions per second when each transaction includes
two or three ODBC (Open Database Connectivity) calls in a
4 CPU machine. In our model, the simulated real-time
database (assumed to run on a single CPU machine for the
clarity of presentation) can process up to 200 transactions per
second, i.e., 5ms per transaction execution, if there isno abort,
restart or deadline miss due to data or resource conflicts. We
also considered more complex transactions which might
require longer execution times.

By generating multiple sources, we can derive transac-
tion groups with different average execution time and
average number of data accesses in a statistical manner. By
increasing the number of sources we can also increase the
workload applied to the simulated database, since more
user transactions will arrive in a certain time interval. We
set AET; = (1 + EstErr) - EET;, in which EstErr is used to
introduce the execution time estimation errors. Note that

TABLE 7
Simulation Settings for Data and Updates
Parameter Value
#Data Objects 2000 (1000 sensor data)
Update Period Uniform(100ms,50sec)
EET; Uniform(3ms,6ms)

Actual Exec. Time
Total Update T.oad

Normal(EET;,+/EET;)
=~ 50%
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TABLE 8
Simulation Settings for User Transactions
Parameter Value
EET; Uniform(5ms,20ms)
AET; EET;- (14 EstErr;)

Actual Exec. Time

Npara; (#Average Data Accesses)
#Actual Data Accesses

P(sensor data access)

P(write | non-sensor data access)
Slack Factor

Normal(AET;,\/AET;)

EET; - Data Access Factor = (5,20)
Normal(Npara;,/Npara;)

0.5

0.5

(10, 20)

QMF and all baseline approaches are only aware of the
estimated execution time. Upon the generation of a user
transaction, the actual execution time is generated by
applying the normal distribution Normal(AET;,/AET;)
to introduce the execution time variance in one group of
user transactions generated by Source;.

The average number of data accesses for Source; is
derived in proportion to the length of EFET;, i.e.,
Npara, = data accessfactor - EET; = (5,20). As a result,
longer transactions access more data in general. Upon the
generation of a user transaction, Source; associates the
actual number of data accesses with the transaction by
applying Normal(Npara,, /Npara,) to introduce the var-
iance in the user transaction group. A user transaction can
access either sensor or nonsenor data with the same
probability (0.5). Given that a user transaction accesses a
nonsensor data item, the transaction writes the correspond-
ing (nonsensor) data item with the probability of 0.5 to
model a relatively high degree of data contention.

For a user transaction, we set deadline = arrival time +
average execution time - slack factor. A slack factor is
uniformly distributed in a range (10, 20). For an update,
we set deadline = next update period. For performance
evaluation purposes, we have also applied other settings for
execution time, data access factor, and slack factor different
from the settings given in Table 8. We have confirmed that
for different workload settings QMF can also support QoS-
Spec by dynamically adjusting the system behavior based on
the current performance error measured in feedback control
loops. However, we do not include the results here due to
space limitations. Interested readers are referred to [7], [8].

6.2 Baselines

In general, the trade off issues between timeliness and
freshness have hardly been studied in real-time databases
except the work by Adelberg et al. [3] and our previous
work [8]. For performance comparisons, we have developed
several baseline approaches based on the best existing
algorithms presented in [3] as follows:

e  Open-IMU: In this approach, all incoming transactions
are admitted, and all sensor data are immediately
updated at their minimum update periods regardless
of the current system status. Hence, the PF, QoD =
100 percent as long as sensor updates commit within
their deadlines. Admission control and QoD adapta-
tion schemes are not applied. Neither the closed loop
scheduling based on feedback control is applied.
Therefore, all the shaded components in Fig. 4 are

turned off. Open-IMU is similar to the “Update First”
algorithm [3], which showed the best data freshness
among the algorithms presented in [3].

e Open-ODU: In this approach, all incoming transac-
tions are admitted regardless of the current miss ratio,
similar to Open-IMU. However, in this approach all
sensor data are updated on demand. An incoming
sensor update is scheduled only if any user transac-
tion is currently blocked to use the fresh version of the
corresponding data item. Open-ODU is modeled after
the “On Demand” algorithm that generally showed
the best miss ratio among the algorithms presented in
[3]. Therefore, Open-IMU and Open-ODU represent
the best existing algorithms to support potentially
conflicting miss ratio and freshness requirements
except our previous work [8].

e Open-IMU-AC: This is a variant of Open-IMU in
which admission control is applied to manage
potential overloads.

e  Open-ODU-AC: This is a variant of Open-ODU in
which admission control is applied. Note that we
apply the same admission control policy (described in
Section 5.2) to Open-IMU-AC, Open-ODU-AC, and
QMF for the fairness of performance comparisons.

6.3 Workload Variables and Experiments

To adjust the workload for experimental purposes, we
define workload variables as follows:

e  AppLoad: Computational systems usually show dif-
ferent performance for increasing loads, especially
when overloaded. We use a variable, called AppLoad =
update load (= 50%) + user transaction load, to apply
different workloads to the simulated real-time data-
base. For performance evaluation, we applied
AppLoad = 70%,100%, 150%, and 200%. Note that
this variable indicates the load applied to the
simulated real-time database when all incoming
transactions are admitted and no QoD degradation
is allowed. The actual load can be reduced in a tested
approach by applying the admission control and QoD
degradation, if applicable.

e FEstErr (Execution Time Estimation Error): EstErr is
used to introduce errors in execution time estimates as
described before. We have evaluated the performance
for EstErr=0,0.25,0.5,0.75,and 1. When EstErr =0,
the actual execution time is approximately equal to the
estimated execution time. The actual execution time is
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roughly twice the estimated execution time when
EstErr = 1, since actual execution time ~ (1 +
EstErr) - estimated execution time. In general, a high
execution time estimation error could induce a
difficulty in real-time scheduling.

e HSS (Hot Spot Size): Database performance can vary
as the degree of data contention changes [1], [5]. For
this reason, we apply different access patterns by
using the z — y access scheme [5], in which 2% of data
accesses are directed to y% of the entire data in the
database and « > y. For example, 90-10 access pattern
means that 90 percent of data accesses are directed to
the 10 percent of a database, i.e., a hot spot. When
x =y = 50%, data are accessed in a uniform manner.
We call a certain y a hot spot size (HSS5). The
performance is evaluated for HSS = 10%, 20%, 30%,
40%, and 50% (uniform access pattern). In this paper,
we only consider the uniform access pattern due to
space limitations. We have verified that QMF can
support the desired QoS under various access
patterns. For more details, refer to [7], [8].

e Fized-QoD: Unlike other variables described before,
this variable is only applicable to QMF-2. For increas-
ing Fixed-QoD, the overall QoD will increase, but less
flexibility can be provided for overload manage-
ment.'* We applied Fixed-QoD ranging from 0.5 to 1
increased by 0.1 to observe whether or not the desired
average/transient miss ratio can be supported for
increasing Fixed-QoD. Given a Fixed-QoD, the result-
ing CPU utilization requirement for sensor updates
after the full QoD degradation is approximately

50% - [Fized — QoD + (1 — Fized — QoD)/4].

(According to QoS-Spec, P, =4 - P, , forevery O; €
D g after the full QoD degradation.) In Table 9, we
show the tested Fixed-QoD values, approximate
update workload after the full QoD degradation, and
load relieved from the full degradation. For example,
when Appload = 150 percent and Fixed-QoD = 0.5 the
actual load can be reduced to approximately 130
percent after the full QoD degradation. The admission
controller should handle the remaining potential
overload, if necessary, to support the desired miss
ratio and QoD. (Generally, it is hard to compute the
relieved load when QMF-1is applied, since it depends
on the fraction of cold data in the database. In our
experiments, the load was relieved up to 30 percent
using the adaptive update policy.)

Even though we have performed a large number of
experiments for varying values of the workload variables,
we only present the three most representative sets of
experiments as summarized in Table 10 due to space
limitations. We have verified that in the other sets of
experiments not presented in this paper our approach can
support the desired QoS-Spec, whereas the open-loop
baseline approaches fail to support the specified miss ratio
and/or freshness in the presence of unpredictable work-
loads and access patterns. In this paper, we present our

14. For performance evaluation purposes, we assume that Dy, is given
for a specific Fixed-QoD value.

TABLE 9
Fixed-QoD versus Update Workload
Fixed-QoD 0.5 0.6 0.7 0.8 0.9 1.0
Update Load | 31.25% 35% 38.75% 425% 46.25% 50%
Relieved Load | 18.75% 15% 11.25% 7.5% 3.75% 0%

performance results in a stepwise manner. We first compare
the performance of QMEF-1 to the open-loop approaches for
increasing AppLoad. From this set of experiments, we select
the best performing open-loop baselines. We compare their
performance to QMEF-2 for increasing Fixed-QoD in Experi-
ment Set 2. Finally, in Experiment Set 3, we show the
performance of QMF-2 under the harshest experimental
settings among the tested ones.

e Experiment Set 1: As described in Table 10, no error
is considered in the execution time estimation, i.e.,
EstErr = 0. Note that this is an ideal assumption,
since precise execution time estimates are generally
not available in database applications, which may
include unpredictable aborts/restarts due to data/
resource conflicts. Performance is evaluated for
AppLoad = 70%,100%, 150%, and 200%. (We have
also performed experiments for increasing EstErr
when AppLoad = 200%, and observed that our
approach can support QoS-Spec. For more details,
refer to [7], [8].)

e Experiment Set 2: In this experimental set, we set
AppLoad = 200% and FEstErr = 1. Further, we in-
crease Fixed-QoD from 0.5 to 1 by 0.1 to stress the
modeled real-time database.

e Experiment Set 3: In this set of experiments, we
apply bursty workloads. Initially, AppLoad = 70%
considering the periodic update workload and user
requests generated via the exponential distribution
as discussed before. At 200 seconds (simulated time),
a group of user transactions arrive simultaneously
generating an additional 100 percent (150 percent)
workload to model bursty arrivals. Note that this
additional workload is instantly applied to the real-
time database at 200 seconds. We do not apply a
statistical approach to generate bursty traffic pat-
terns since it is unknown whether or not real-time
database workloads are bursty following a specific
traffic pattern such as self-similar traffic.

In summary, this is a large set of tests performed over a
wide range of parameter settings. This represents a robust
performance study. In our experiments, one simulation run
lasts for 10 minutes of simulated time. For all performance
data, we have taken the average of 10 simulation runs and
derived the 90 percent confidence intervals. Confidence
intervals are plotted as vertical bars in the graphs showing
the performance evaluation results. (For some performance
data, the vertical bars may not always be noticeable due to
the small confidence intervals.)

6.4 Experiment Set 1: Effects of Increasing Load

In this section, we present the performance results for
increasing loads.

Average Miss Ratio: As shown in Fig. 7, Open-IMU
shows the highest average miss ratio exceeding 70 percent
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TABLE 10
Presented Sets of Experiments
Exp. Set  Varied Fixed
1 AppLoad = 70%,100%,150%,200% EstErr =0

HSS = 50% (uniform access)

AppLoad =200%

2 Fixed-QoD =0.5—-1.0 EstErr=1
HSS =50%
EstErr=1

3 AppLoad = T70% = 170%,220% Fixed-QoD = 0.5
HSS =50%

when AppLoad = 200%. By applying admission control,
Open-IMU-AC significantly improves the miss ratio, but the
miss ratio reaches 14.25 4 0.77% when AppLoad = 200%
violating the 1 percent threshold. Due to the relatively low
update workload, Open-ODU shows a lower miss ratio
than Open-IMU. However, its miss ratio reaches 55.56 +
1.30% when AppLoad = 200%.

In Fig. 7, Open-ODU-AC shows a near zero miss ratio
satisfying the 1 percent threshold for the tested AppLoad
values, similar to QMF-1. Both Open-ODU-AC and QME-1
also showed a near zero transient miss ratio without any
miss ratio overshoot in Experiment Set 1. (Due to space
limitations, we do not plot the transient performance here.)
Open-ODU-AC shows a good miss ratio in Experiment Set 1
because the zero EstErr leads to an effective admission
control. However, in the following subsection, we show that
Open-ODU-AC fails to support the target freshness. When
AppLoad is high, many (backlogged) user transactions may
have to use stale data instead of waiting for on-demand
updates to meet their deadlines. Consequently, the per-
ceived freshness drops. Further, more on-demand updates
can miss their deadlines for increasing loads. Note that
transactions can be forced to wait until on-demand updates
finish without allowing stale data accesses. We have also
considered this alternative approach for Open-ODU and
Open-ODU-AC, and observed a significant miss ratio
increase given a high AppLoad. In contrast, our approach
can support both miss ratio and freshness requirements
even given unpredictable workloads.

Perceived Freshness: In Fig. 8, Open-IMU and Open-
IMU-AC show the 100 percent perceived freshness by
updating all sensor data immediately. QMF-1 shows a near
100 percent perceived freshness; the lowest perceived

100 -
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Fig. 7. Average miss ratio (Experiment Set 1).

freshness was 99.95 4 0.08% when AppLoad = 200%."° As
a result, the three curves representing the perceived
freshness for Open-IMU, Open-IMU-AC, and QMF-1 over-
lap in Fig. 8.

In contrast, Open-ODU significantly violates the target
perceived freshness (98 percent). As shown in Fig. 8, the
freshness is approximately 10 percent when AppLoad =
150% and 200%. Open-ODU-AC achieves a relatively high
freshness compared to Open-ODU. This is because Open-
ODU-AC applies admission control to incoming user
transactions. As a result, a fewer number of on-demand
updates miss their deadlines. However, Open-ODU-AC
also violates the target 98 percent freshness; its perceived
freshness is below 80 percent when AppLoad = 200%. This
freshness violation can be a serious problem, since it may
incur a large profit or product quality loss by processing
many transactions using stale data.

Average Utilization: In Fig. 9, the average CPU utiliza-
tion is plotted for all tested approaches. The utilization of
Open-IMU and Open-IMU-AC quickly reaches near 100
percent, since all sensor data are immediately updated
without considering the current miss ratio. Open-ODU and
Open-ODU-AC show a severe underutilization when
AppLoad = 70% and 100%. This is because updates in
Open-ODU and Open-ODU-AC are scheduled purely on
demand despite the possible underutilization (or freshness
violation). In contrast, QMF-1 avoids both underutilization
and overload, as shown in Fig. 9. The utilization ranges
between 60-85 percent supporting the specified miss ratio
and freshness. This is because QMF-1 dynamically adapts
the workload considering the current system status mea-
sured in the feedback control loops.

6.5 Experiment Set 2: Effects of Increasing Fixed-
QoD

In this section, we evaluate QMF-2’s miss ratio, QoD,
utilization, and real-time database throughput (defined in
the following subsection) for increasing Fixed-QoD. We
compare the performance of QMF-2 to Open-IMU and
Open-IMU-AC. (In this experimental set, we do not
consider Open-ODU and Open-ODU-AC, since these
approaches can support neither the specified freshness
nor miss ratio as discussed before.)

Average Performance: As shown in Fig. 10, the QoD
increases for increasing Fixed-QoD as expected. Also,
QMEF-2 achieves the near zero miss ratio at the cost of

15. Recall in this set of experiments (for QMF-1), we assume it is
acceptable to use stale data because the application can extrapolate as long
as the target freshness is not violated.
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reduced utilization and throughput. When Fixed-QoD= 1,
the QoD = 100 percent and the miss ratio is near zero.

As Fixed-QoD increases, a fewer number of user
transactions can be admitted and processed due to the
increasing update workload. Therefore, the user transaction
throughput can be decreased. To further investigate this
relation between Fixed-QoD and throughput, we define the
throughput of real-time databases which apply firm dead-
line semantics:

#Timely

Throughput = 100 - ————
#Submitted

(%),

where #Timely and #Submitted represent the number of user
transaction committed within their deadlines and that
submitted to the system (before admission control), respec-
tively. Using this equation, we can theoretically compute the
maximum possible throughput when AppLoad = 200% and
the 100 percent QoD is required. The applied update and user
transaction workloads are approximately 50 and 150 percent,
respectively. Hence, the maximum possible throughput
supporting the 100 percent QoD is approximately

33% = 50%/150%
= (Total CPU Capacity — Update Workload)/
(Applied User Transaction Workload)

assuming that there is no deadline miss when the CPU
utilization is 100 percent. In the following, we compare the
throughput of QMF-2, Open-IMU, and Open-IMU-AC to
this ideal 33 percent throughput.

As shown in Fig. 10, the throughput of QME-2 decreases
from 43.97 4 0.93% to 29.51 & 1.47% as Fixed-QoD increases
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Fig. 9. Average utilization (Experiment Set 1).
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from 0.5 to 1. This means approximately 43 and 29 percent
of the submitted user transactions are actually admitted and
committed within their deadlines when Fixed-QoD = 0.5 and
1, respectively. The throughput of QME-2 exceeds the ideal
33 percent when Fized — QoD < 0.8 due to the reduced but
bounded QoD as described in QoS-Spec.

The utilization drops from approximately 91 to 89 percent
when Fixed-QoD increases from 0.5 to 1. The overall
utilization drop is smaller than the (user transaction)
throughput decrease. This is because more updates are
executed as Fixed-QoD increases.

Note that Open-IMU-AC showed a 22.35+1.29%
throughput given AppLoad = 200% and EstErr =1 (ap-
plied to this set of experiments). When Fixed-QoD =1, QMF-
2’s throughput is approximately 7 percent higher than
Open-IMU-AC’s (= 29.51% — 22.35%), while providing the
100 percent QoD. When Fixed-QoD = 0.5, the corresponding
improvement of throughput is more than 21 percent
(=~ 43.97% — 22.35%). For the same AppLoad and EstErr,
the throughput of Open-IMU was below 20 percent. In
Open-IMU and Open-IMU-AC, the simulated real-time
database is overloaded, since all incoming transactions are
simply admitted or admission control is not effective
enough due to large errors in execution time estimates. As
a result, many deadlines are missed causing the throughput
decrease. (Open-IMU and Open-IMU-AC missed approxi-
mately 79 and 73 percent of transaction deadlines when
AppLoad = 200% and EstErr =1.)

From these results, we observe it is sensible to prevent
potential overloads using admission control (and QoD
management) according to the feedback control signal. In
this way, QMF-2 can improve the throughput compared to
Open-IMU and Open-IMU-AC, while achieving a near zero
miss ratio and 100 percent QoD, if desired.

Transient Performance: Figs. 11 and 12 show the
transient miss ratio, QoD, and utilization when Fixed-QoD
is set to 0.5 and 1, respectively. (We have also measured the
transient performance for other Fixed-QoD values. We
observed the similar miss ratio and utilization, while the
QoD increases for increasing Fixed-QoD. Due to space
limitations, we only present the performance results for the
two ends of the tested Fixed-QoD range.)

As shown in Figs. 11 and 12, QMF-2 does not exceed the
1 percent miss ratio threshold without any miss ratio
overshoot throughout the experiments. In Fig. 11, the QoD
is decreasing to avoid a potential miss ratio overshoot given
AppLoad = 200%.
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Fig. 12. Transient performance of QMF-2 in Experiment Set 2 (fixed-QoD = 1).

As shown in Fig. 12, QMEF-2 achieves the 100 percent
QoD without any miss ratio overshoot when Fixed-QoD = 1.
(The average utilization and throughput are slightly
reduced to support the 100 percent QoD as discussed
before.) Therefore, for example, a DBA of a financial trading
or factory automation company can select an appropriate
QoD considering the application specific data semantics
without a miss ratio overshoot at the cost of a possible
throughput decrease.

In Experiment Sets 1 and 2, both QMF-1 and QMF-2
were able to support the desired average/transient miss
ratio, while providing the target PF or QoD. Note that
QMFEF-1 and QMF-2 have achieved a near zero miss ratio
and perfect freshness. Therefore, QMF can be considered to
meet fundamental requirements for real-time transaction
processing. At the same time, QMF achieved the higher
throughput than the open-loop baselines did. These results
show the effectiveness of QMF to support the specified real-
time database QoS.

6.6 Experiment Set 3: Effects of Bursty Traffic

In this subsection, we consider bursty workloads unlike all
the other sets of experiments presented previously. Despite
the bursty arrivals, QMF-2 supports the specified average miss
ratio and data freshness. When the 100 percent workload
burstis given in addition to the initial 70 percent App Load, the
average miss ratio is 0.16 £ 0.03% and QoD is 99.83 £ 0.03%.
Given the 150 percent burst workload (in addition to the
initial 70 percent AppLoad), the average miss ratio is 0.23 £
0.03% and QoD is 97.91 + 0.38%. (Recall Fixed-QoD= 0.5 in
this set of experiments.) This is because the bursty workload is
transitory compared to the 10 minutes simulation length.

As shown in Fig. 13, the transient miss ratio increases to
approximately 16 percent at 205 seconds, i.e., the next
sampling instant after the bursty arrivals, given the 100
percent workload burst at 200 seconds. Given the 150 percent

workload burst, the transient miss ratio is approximately 27
percent at 205 seconds, as shown in Fig. 14. (Both in Figs. 13
and 14, the miss ratio is back to near zero after 205sec.) These
miss ratio overshoots are experienced mainly because our
current feedback control model does not consider bursty
workloads and, therefore, it is not responsive enough against
bursty arrivals. (As a result, the QoD is not degraded enough
to manage the bursty overload. Neither, enough admission
control is applied to incoming bursty requests.)

A further research is necessary to characterize real-time
database workloads in terms of user request arrival
patterns. Given a specific traffic pattern, the feedback
control model can be further refined. A traffic shaper can
also be developed to smooth bursts, if any. These research
issues are reserved for future work.

7 RELATED WORK

Considering the abundance of QoS and database research
work separately, relatively less work has been done on real-
time database QoS management [3], [20]. This can be a
serious problem; it has been reported that approximately
$420 million revenue loss resulted due to late, i.e., nonreal-
time, e-commerce transaction processing in 1999 [2].
Adelberg et al. have found that timeliness and freshness
requirements may conflict in real-time databases [3]. To
balance the conflicting requirements, they presented several
algorithms for scheduling sensor data updates and user
transactions. Our flexible freshness management schemes
extend their work by dynamically adapting the update policy
or periods, if necessary, to manage overloads. Consequently,
QMF achieves a better performance as discussed before.
Other aspects of the real-time database performance can be
traded off to improve the miss ratio. In [15] and [20], the
correctness of answers to queries can be traded off to enhance
timeliness by using the database sampling and milestone
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Fig. 14. Transient performance in the presence of bursty arrivals (150 percent workload burst).

approach [12], respectively. In these approaches, the accuracy
of the result can be improved as the sampling or computation
progresses, while returning approximate answers to the
queries, if necessary, to meet their deadlines. An adaptable
security manager is proposed in [18], in which the database
security level can be temporarily degraded to enhance
timeliness. These approaches carefully trade off conflicting
performance metrics, and thereby significantly improve the
miss ratio. Conceptually, our flexible freshness management
scheme is analogous to these approaches in terms of
performance trade-off. However, it is hard to directly
compare our freshness metrics to their performance metrics,
i.e., accuracy of query results and data security. Also, a naive
combination of our scheme with theirs may cause unexpected
side effects incurring intolerable inaccuracy of query results
or security risks, which are beyond the scope of this paper.

Feedback control has been applied to QoS management
and real-time scheduling [11], [13], [23] due to its robustness
against unpredictable operating environments [16]. How-
ever, these work do not consider real-time transaction
processing and freshness management issues; therefore,
they are not directly comparable to our work. Feedback
control has also been recognized as a viable approach to
manage the (non-real-time) database performance [21], [22].
They substantially improved the database throughput/
response time by applying high level notions of feedback
control, i.e., performance observation and dynamic adapta-
tion of the system behavior in a conceptual feedback loop.
However, they intend to manage the database throughput,
which is known to be very different from managing the
miss ratio of real-time transactions [9], [17]. Generally, a lot
of work remains to be done to manage the database QoS,
since the related research is still in its infancy.

8 CONCLUSIONS

Processing real-time transactions within their deadlines
using fresh data is essential but challenging. To address the
problem, we have

1. defined QoS metrics in terms of miss ratio and novel
data freshness metrics to let a DBA specify the
desired QoS,

2. introduced flexible QoD management schemes,

3. presented a new QoS management architecture that
can support the desired QoS even given dynamic
workloads and access patterns, and

4. designed real-time database workloads considering
the real-time data semantics observed in NYSE trade
traces and transaction execution times modeling
high performance main memory databases.

In an extensive simulation study, QMF achieved a
significant performance improvement compared to several
baselines including best existing algorithms for miss ratio
and freshness trade-off in real-time databases, while
supporting the target miss ratio and freshness (except for
bursty workloads). As one of the first work on QoS
management in real-time databases, the significance of
our work will increase as the demand for (and importance
of) real-time data services increases. In the future, we will
further investigate the timeliness and freshness issues in
both centralized and distributed real-time databases.
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