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Abstract

In this paper, we present a middleware architecture for co-
ordination services in sensor networks that facilitates inter-
action between groups of sensors which monitor different
environmental events. It sits on top of the native routing
infrastructure and exports the abstraction of mobile com-
munication endpoints maintained at the locations of such
events. A single logical destination is created and main-
tained for every environmental event of interest. Such desti-
nations are uniquely labeled and can be used for communi-
cation by application-level algorithms for coordination and
sensory data management between the different event lo-
cales. For example, they may facilitate coordination, in a
distributed intrusion scenario, among nodes in the vicinity
of the intruders.

We evaluate our middleware architecture using GloMoSim,
a wireless network simulator. Our results illustrate the suc-
cess of our architecture in maintaining event-related com-
munication endpoints. We provide an analysis of how archi-
tectural and network dependent parameters affect our per-
formance. Additionally we provide a proof of concept im-
plementation on a real sensor network testbed (Berkeley’s
MICA Motes).

1 Introduction

The impending proliferation of sensor networks calls for
new services and middleware for distributed deeply embed-
ded computing. We consider ad hoc networks formed by
dropping wireless computationally-equipped sensors (e.g.,
from an airplane) onto a dangerous or inaccessible infras-
tructureless environment such as a disaster area or a hostile
territory behind enemy lines. The lack of an infrastructure
implies that no workstations or other centralized computing
equipment are present for management or information pro-
cessing purposes. Such sensor networks will therefore have
to host their own distributed embedded computation. They
will execute their mission autonomously while interacting
with spatially distributed external events in the physical en-
vironment. In this paper, an environmental event refers to an

ongoing activity, such as the motion or presence of a vehi-
cle, that persists in the physical world for some continuous
interval of time.

A new distributed computing paradigm is needed to sup-
port the writing and execution of distribution applications
for such networks. Due to the tight coupling between com-
putation in the sensor network and events in the environ-
ment, one key requirement of such a paradigm is to support
applications that coordinate teams of sensor and actuator
nodes in the vicinity of different external events of inter-
est. For example, one may want to exchange data among all
nodes in the vicinity of hostile targets in the sensor field to
determine a plan of attack.

The aforementioned coordination problem offers an inter-
esting research challenge to the communication subsystem
pertaining to mobility. In PDAs and Wireless LANs, sup-
porting mobility typically refers to maintaining connectiv-
ity between individual devices despite their changing spa-
tial relationship to one another. In contrast, what moves in
our scenario are the external environmental events. Sensor
network nodes themselves remain relatively motionless. In
this paper, we present middleware that allows programmers
to think of mobile external events in terms of abstract persis-
tent entities that logically form in the network as a response
to appropriate sensor readings. The middleware forms and
maintains a unique entity around each event. These enti-
ties are addressable and act as communication destinations
(end-points). Note that we define an event as something
in the environment that causes a sensor to report a certain
reading (e.g., fire, moving vehicle, etc.) and an entity as the
abstract addressable equivalent of this event as referenced
by the programmer.

The communication problem is therefore to maintain the
abstraction of transport-layer connections between differ-
ent entities, when each entity is composed of a changing set
of sensor nodes at the location of a mobile external event.
Such mapping is made complicated by several factors. One
is the need for seamless end-point migration across nodes
as the event moves. Another is that sensor nodes that be-
come aware of an external event should be able to decide
whether it is the same event previously seen by other sen-



sors or a new event. Otherwise, an incorrect event list will
be collectively maintained or an incorrect mapping will re-
sult between events and communication endpoints. This
paper reports a communication architecture which resolves
these challenges.

Our middleware hides the details of sensor group formation
around environmental events, end-to-end connection estab-
lishment between different entities, and entity maintenance
to ensure that a single abstract entity is created and main-
tained for every event of interest in the environment. This
architecture’s ability to ensure a one to one relationship be-
tween abstract entities and environmental events simplifies
communication, facilitates coordination, and reduces pro-
gramming complexity by providing communication with
persistent entities instead of dynamically changing sets of
individual nodes.

Our techniques are geared for the case where events are rea-
sonably sparse (i.e., the tracked environmental targets are
generally not in close proximity). Disambiguating nearby
targets is an inherently difficult problem that is not ad-
dressed in this paper. The reader may want to think of
our architecture as imposing a resolution constraint. Tar-
gets that are closer than the available resolution cannot be
individually distinguished. As we shall see later, the res-
olution is of the order of the communication radius of the
sensor nodes. In the physical sensor node prototype avail-
able to the authors this radius can be adjusted from several
inches to hundreds of feet.

The remainder of this paper is organized as follows. We
review related work in Section 2. An overview of entity
establishment and maintenance as well as details of the un-
derlying protocols follows in Section 3. Detailed simulation
results are discussed in Section 4. A description of an im-
plemented proof-of-concept prototype is given in Section 5.
Finally, we explore future work and conclude in Section 6.

2 Related Work

Sensor networks [11] have recently emerged as a promis-
ing platform for a myriad of distributed embedded appli-
cations in defense [42] and scientific exploration [21]. A
typical sensor network is highly distributed and composed
of thousands to hundreds of thousands of individual nodes.
Communication protocols are therefore a very important re-
search topic in sensor networks.

Most prior work on communication in sensor networks has
focused on the lower layers in the protocol stack. For ex-
ample, [41, 45] propose MAC layer protocols designed for
sensor networks. At the network layer, protocols such as
DSDV [27], DSR [14], AODV [29] and TORA [25] have
gained popularity as routing solutions for ad hoc wireless
networks. These protocols are designed for networks with

identifier-based node addressing. Recent sensor network re-
search suggests alternative addressing schemes that do not
rely on having destinations with specific identities. Instead,
it has been proposed that routing in sensor networks be
attribute-based where the destination is reached by its at-
tributes such as location or sensor measurements. For ex-
ample, LAR [17] and DREAM [3] propose location-aware
routing protocols, where the destination is implicitly de-
fined by its physical location. Directed diffusion [13] and
the intentional naming system [1] provide routing and ad-
dressing based on data interests. A related effort is attribute-
based naming [32], proposed for an Internet environment,
which allows queries to be routed depending on the re-
quested content rather than on the identity of the target ma-
chine. Our work falls in the general category of attribute-
based communication. We provide an infrastructure where
communication end-points are placed at the locations of
specific events in the environment. Unlike prior work on
attribute-based addressing, we focus on protocol dynamics
that arise due to the motion of such events in the external
world. We aim to maintain the persistence and uniqueness
of these communication end-points as the event moves and
discuss factors that affect the maximum trackable speed of
these events. Also, unlike routing-layer approaches, our ar-
chitecture sits in the transport layer on top of geographic
forwarding.

Mobile end-points have been addressed in traditional and ad
hoc computer networks. For example, Energy-aware rout-
ing protocols were proposed such as Span [6] and GAF [43]
for communication between mobile nodes. In Mobile IP
[26], mobile hosts are free to migrate between LAN’s while
they remain connected by a home agent residing at their
home address. Another mechanism for maintaining mobile
connections uses DNS to provide the indirection necessary
to support mobility [34]. We address mobility in a differ-
ent sense in our protocol. Whereas the aforementioned pro-
tocols assume moving nodes and provide for communica-
tion between these moving nodes, we assume static nodes
but moving events (and thus entities) in our system and
provide a migratory end-point infrastructure for communi-
cation between these moving entities. A recent protocol,
called TTDD [44], addresses communication between mov-
ing sources and sinks in a sensor network. Our work differs
from this in the fact that we provide for the creation and
maintenance of abstract entities to facilitate communication
between moving events in the network. Also, our commu-
nication end-points are bi-directional as opposed to being
statically designated as sources or sinks.

Several algorithms exist that provide clustering and vari-
ous granular levels of group formation on both the network
and application layers. The ( � , t) framework [22, 37], and
Landmark Hierarchy [39] organize nodes into hierarchical
groups as a solution to routing. LEACH [10], ASCENT



[5], SPAN [6], and GAF [43] form groups or share data
locally to conserve energy and power down unused or un-
needed nodes. The AC Hierarchy [7, 8, 38] forms hierarchi-
cal clusters covering the entire sensor network and provides
a high level programming abstraction for division or sim-
plification of the sensor network. Finally, GLS [19] and
MASH [33] provide cluster-based location or query ser-
vices for locating data or nodes. Unlike these cluster-based
or group-based algorithms we provide the abstraction of
tracking groups linked directly to environmental events of
interest. Although some of these algorithms such as GLS
could be used in parallel with our work for object lookup,
and although various ideas from these protocols are similar
or could be used to enhance the efficiency or functionality
of our modules, none provide sufficient support for entity
formation around environmental events of interest and end-
to-end connection establishment and maintenance between
moving entities.

Our work is also complementary to several research efforts
that aim to provide new abstractions and paradigms for dis-
tributed computing in sensor networks. For example, Mag-
netOS [2], exports the illusion of a single Java virtual ma-
chine on top of a distributed sensor network. The applica-
tion programmer writes a single Java program. The run-
time system is responsible for code partitioning, placement,
and automatic migration such that total energy consumption
is minimized. Mate [18] is another example of a virtual ma-
chine developed for sensor networks. It implements its own
bytecode interpreter, built on top of TinyOS [11]. The in-
terpreter provides high-level instructions (such as an atomic
message send) which the machine can interpret and execute.

To the authors’ knowledge, the communication architecture
proposed in this paper is the first that provides middleware
support to tracking applications for group formation around
environmental events, end-to-end connection establishment
between different entities, and abstract entity maintenance
to ensure that a single entity is formed and maintained for
every event in the environment. The architecture ensures a
one to one relationship between abstract entities and envi-
ronmental events thus simplifying communication. It re-
duces programming complexity by allowing communica-
tion with entities rather than individual nodes.

3 Service Architecture

The ability of a sensor network to closely interact with the
environment in which it has been deployed gives rise to a
multitude of applications in which code execution is tightly
linked to the locations of environmental events. Appropri-
ate communication abstractions are required to isolate dis-
tributed application programmers from accounting for the
changing locations of environmental events in the vicinity
of which the communication end-points of their applica-

tions are located. Our architecture provides such abstrac-
tions by a combination of (i) a team management frame-
work for maintaining proper mapping between communi-
cation endpoints and external events (ii) a transport layer
protocol for communication among event-related endpoints.
Together, they maintain communication end-points associ-
ated with mobile external events, as well as maintain con-
nectivity among such endpoints. This architecture is in-
dependent of the underlying radio, data link, and network
layer protocols making it applicable in principle to an array
of sensor network platforms.

Such programming abstractions are desired in applications
where one wishes to interact with physical events in the en-
vironment that, for one reason or another, do not commu-
nicate directly with the network. By forming an abstract
entity that moves with the event, we can associate state and
behavior with the physical event. For a hostile target being
tracked, this state and behavior could include monitoring
the number of shots fired from a tank or the distance an ob-
ject has traveled.

3.1 The Entity Communication Problem

The problem addressed by our architecture is more formally
described as follows. We consider a dynamically changing
set

�
of events in the physical environment of the sensor

network. Let the physical location of each event ����� �
at

time � be denoted � �	� ��
 . A node is said to be in the vicin-
ity of event � � at time � if it is within sensor range of the
event’s location, � ��� ��
 . In this paper, we assume that envi-
ronmental events are localized. In other words, their loca-
tion is described by a single point in space, as opposed to
an area. This definition applies to tracking vehicles, finding
survivors, monitoring wild animals, or detecting localized
fires. It does not apply to applications involving distributed
phenomena such as detection of large chemical spills. We
assume that events can be detected independently by indi-
vidual nodes in the sensor network based on their local mea-
surements. For example, detecting a magnetic signature in
a desert battle area would usually be indicative of a passing
armored vehicle. Finally, we assume that events are sparse.
In other words, the signatures of different targets are gener-
ally not overlapping.

Let 
 � denote the set of nodes in the vicinity of event � � .
The objective of our architecture is to maintain a unique ad-
dressable destination associated with each event ��� , such
that sending data to this logical event address causes deliv-
ery of this data to 
�� regardless of the location ��� � ��
 . In the
current implementation, we elect a leader out of set 
�� . The
leader, among other things, is responsible for communica-
tion with remote destinations. Hence, in the above problem
statement, we define delivery of a message to 
 � as delivery



of the message to the current entity leader who by defini-
tion belongs to the set 
 � . What the leader does with the
message is an orthogonal issue in our architecture.

Note that once the aforementioned addressing and commu-
nication problem is solved, it becomes trivial to associate
multiple communication end-points with each entity sim-
ply by demultiplexing the received message based on a port
number in the message header, in the same sense that UDP
creates multiple ports over IP.

3.2 Sensor Network Assumptions

Our underlying sensor network typically consists of thou-
sands of small sensor nodes thrown arbitrarily (e.g., from
the air) onto a large target area, such as a battlefield or
the scene of a natural disaster. Individual nodes have re-
source limitations associated with small physical size in-
cluding low-power batteries, relatively slow processors, and
limited memories. They are capable of wireless commu-
nication and once deployed form a large-scale ad hoc net-
work. A key assumption is that the formed sensor network
has no pre-existent infrastructure or centralized services.
It is precisely the difficulty of creating such an infrastruc-
ture in harsh or inaccessible environments that motivates
the sensor network approach. An example of computation-
ally equipped wireless sensor devices that meet the above
description is the MICA mote [12], which we use in our
experimental prototype.

Once deployed, nodes in a sensor network are assumed to
establish their location and remain motionless except due
to environmental factors such as wind and water. In an im-
portant departure from the typical mobile ad hoc wireless
network model, nodes in sensor network literature do not
have IP-address, and do not run the TCP/IP protocol suite.
Instead of possessing unique ID’s, sensor network nodes
are usually referenced by attributes such as location. Both
localization services [4, 30] that establish sensor network
coordinate frameworks, and location-based routing services
[17, 3] that route messages geographically have been dis-
cussed at length in previous literature.

Sensor nodes may perform local processing as appropri-
ate for their particular application. This could be aggregat-
ing and reporting raw data, triangulating the position of an
event, coming to agreement about an actuation or reporting
strategy, or performing distributed event analysis. A dis-
tributed application, such as a distributed intrusion response
system, may need to pass the results of such local process-
ing among the respective groups of sensors to coordinate a
sensor network reaction.

Our service can be thought of as a distributed protocol
that sits in the transport layer of the sensor node’s proto-
col stack. In its basic form, the protocol implementation

consists of two modules, namely, the entity management
module (EMM), and the entity connection module (ECM).
These modules are shown in Figure 1. As the name sug-
gests, the EMM forms a local entity in response to sen-
sor readings at the locations of environmental events. It
maintains the unique identity of this entity as the event of
interest migrates in the environment. The ECM provides
a means for entity registration, maintains communication
end-points, and provides connectivity to allow communica-
tion among different entities. The following sections dis-
cuss the details of the APIs and implementations of the
aforementioned modules.

Entity-Connection
Module

Communication API Membership API

join()
leave()

leader()receive()
listen()
send()

Application

Entity-Management
Module

- Demultiplexing
- Message Buffering

- Leader Election
- Persistent State

Messages
Data
Messages

Entity Control

Network and MAC Layer
(Location-based Routing)

Figure 1. Service Architecture

3.3 Entity Management Module

The entity management module (EMM) provides an entity
formation and maintenance service. The EMM has sev-
eral essential functions. First, an entity must be created
and identified when an event first occurs in the sensor net-
work. Second, once established, the EMM must maintain
this single entity and prevent spurious entities from form-
ing around a previously abstracted event. While an entity
exists the EMM must maintain its persistent state such as
its unique identity which signifies the local environmental
event. Finally, the EMM is responsible for ensuring that
nodes that sense an event for the first time know when to
become a member of an existing entity and when to spawn
a new entity around the sensed event. These functions are
described below.

3.3.1 Functional Overview

At any given time, multiple events in the environment give
rise to multiple entities which host the communication end-
points in the sensor network. An entity is a set of nodes
in the vicinity of a single environmental event. We call
nodes whose sensors detect the signature of the correspond-
ing event, entity members. These nodes are said to be within
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the sensory horizon of the target event. To the rest of the
sensor network, an entity acts as a single whole. The fact
that the entity may consist of multiple nodes is hidden and
the identities of these nodes are abstracted away.

Entity members volunteer to be an entity leader, a cen-
tral node responsible for communication and group main-
tenance, as well as running entity-specific application code.
Once the entity leader no longer detects the event, it hands-
off leadership (and current state) to another node by sending
a relinquish leadership message. As the event migrates or
expands, the leadership handoff mechanism built into the
EMM ensures that the entity and its stored application state
migrate with it. The application on a node is informed when
the node becomes a leader so that it can pick up computa-
tion from where the previous leader left it. The application
is also notified when the node ceases to be leader.

A key requirement is to ensure that only one entity is
spawned for the same environmental event. The EMM pro-
tocol achieves this requirement by announcing the existence
of an entity to nearby nodes within a distance called the
awareness horizon. By design, the awareness horizon is
larger than the sensory horizon. Nodes in the awareness
horizon that cannot sense the event are called entity follow-
ers, as distinguished from entity members. These nodes are
prevented from spawning new entities.

Nodes join the awareness horizon upon the reception of a
bounded-hop broadcast (heartbeat) from the nearby EMM
leader. Upon receiving a heartbeat, a node sets a corre-
sponding entity timeout timer. The node ceases to be a fol-
lower when the timer expires. The timer is re-initialized
upon the receipt of each new heartbeat. If the node senses
the event signature before the entity timeout timer expires it
becomes a member of the existing entity. If the timer had
already expired the node is no longer a follower and will
create a new entity. This mechanism prevents multiple enti-
ties from being spawned for the same environmental event.
Figure 2 depicts the node state transition diagram between
follower, member, and leader states, as well as the free state
in which a node is not cognizant of any entities. For read-
ability, the only transitions shown are those between differ-
ent states (as opposed to loop-backs from a state to itself).

Note that, while inhibiting entity followers from creating
new entities is essential for preventing redundant represen-
tation of the same target, it has one unfortunate side effect.
Namely, the mechanism may prevent nodes from reporting
secondary events in the vicinity of events already reported.
Since we assume that events are sparse, the hope is that
cases like the above are not common.

3.3.2 Entity Uniqueness

Entity uniqueness is the algorithm property that states that
only one entity is associated with any given environmental
event. In this section, we take a closer look at the conditions
under which this property holds true. In general, there are
two cases in which entity uniqueness can be compromised.
The first case occurs at excessive target speeds. If the target
moves in the environment fast enough, far apart nodes can
detect it at about the same time and create independent enti-
ties to represent it. The second case occurs due to message
loss or node failures which may prevent proper leadership
handoff. Consequently a new leader may emerge that does
not inherit the right entity identity from the old leader, caus-
ing a different entity to emerge for the same environmental
event. In the following, we quantify the maximum event
speed that preserves entity uniqueness and discuss provi-
sions to ensure robustness in the face of failures.

Event Speed: The key rule which inhibits creation of du-
plicate entities is that followers of existing entities cannot
spawn new entities. Instead, when they eventually sense the
event, they must join the membership of the entity of which
they were followers. By extending awareness of the event
(i.e., the awareness horizon) beyond its sensory horizon we
can ensure that new nodes will always become aware of the
current entity before they sense the event. Hence, a single
unique entity will exist for each event in the environment.
The above uniqueness property is violated only if the event
moves fast enough in the environment such that it is sensed
by nodes outside of the awareness horizon before informa-
tion of this event is propagated to them. Controlling the
awareness horizon therefore determines the maximum tol-
erable event velocity as will be detailed below.

Note that a new leader is elected once the old one stops sens-
ing the target. This new leader will cause the center of the
awareness horizon to shift to its new location. If leader re-
election and heartbeat propagation took zero time, the sys-
tem could theoretically track infinitely fast targets as long
as the awareness horizon was at least double the sensory
horizon. This is because the current leader would always
be within sensor radius from the target and no other node
within the sensory horizon could be more than twice the
sensor radius away from the leader. Hence, all nodes who
sense the target are always within the awareness horizon
and are therefore inhibited from creating new entities. In



reality, however, leader re-election and heartbeat propaga-
tion take time. If the maximum combined leader re-election
and heartbeat propagation delay was � , it is easy to show
that the maximum speed that preserves entity uniqueness is
� awareness horizon ����� sensory horizon 
���� . It should
be noted that the above is a conservative estimate. Entity
uniqueness will not be compromised immediately at higher
target speeds.

Robustness to Message Loss and Failure: To prevent
handoff failure in the case that an entity leader dies or other-
wise fails to send out the relinquish heartbeat message, each
entity member sets a failed leader timer. This timer, upon
expiration, prompts an entity member to assume the entity
leader role and begin sending heartbeats after an additional
random delay (to prevent simultaneous takeover collisions).
This failed leader timer must be set to a value larger than the
heartbeat period, the interval between heartbeats, to ensure
that timer expiration does not occur prematurely while the
current leader is still alive. Depending on expected message
loss, one might also set this timer to a value greater than two
or three times the heartbeat period to prevent inopportune
and premature handoff when heartbeats are lost or subject
to collisions. Note the delay that a node waits before assum-
ing the entity leader role could be determined in accordance
with the strength of a node’s sensor reading, whether or not
this sensor reading is growing or shrinking in strength, the
number of entity members that are direct neighbors of that
node, or by some other appropriate metric.

Message loss can also prevent nodes within the awareness
horizon from getting the leader’s heartbeats. Consequently,
these nodes may not become aware of the entity and may
create a spurious one when they sense the event. To kill
such spurious entities, we employ a mechanism that asso-
ciates larger weights with older entities and biases nodes
against joining entities with smaller weights. The mecha-
nism maintains an alive counter at the leader of each entity.
This counter is propagated through heartbeats and its value
is accumulated across leader handoffs. When a new entity
is first created, its counter is initialized to 0. This value is
then incremented for each heartbeat sent out and is there-
fore a reflection of how long the entity has remained in the
network. When a node tries to spawn a new entity, every
neighbor that is already part of an entity with a higher alive
counter ignores the new node. Hence, the faulty node is iso-
lated. The mechanism will send a kill message to the faulty
node to request termination of its spurious entity.

The above mechanism serves to prevent spurious groups
from forming in the presence of message loss, but fails to
handle the case where events of the same signature migrate
across one another’s path. To handle this more complex
scenario we define a compile time specified threshold, min
time alive, to ensure entities that have existed over some
time period remain after crossing paths with an even older

entity. When a node of entity �
	 receives a heartbeat from
the leader of another entity ��� and both entities have an
alive counter set greater than the min time alive threshold,
we require that both entities coexist. In this case, nodes in-
dependently apply the EMM protocol with respect to each
entity. They may be within the awareness horizon of mul-
tiple entities at the same time. When they sense the event,
they become members of all entities that exceed the min
time alive threshold of which they are aware.

3.4 Entity Management API

The API exported by the EMM consists of join(signature)
and leave(signature) primitives which the application calls
when it first senses or stops sensing an event signature
respectively. The code of the signature is passed as the
input parameter to these primitives. For example, if the
magnetic signature of a vehicle is sensed, the node calls
join(Magnetic). Unlike traditional group communication,
the join() does not take a group identifier as input. Instead,
it returns as output the identity of the environmental event
the application just sensed (i.e., the identity of the entity for
which the node was a follower at the time join() was called).
If the node is a follower of multiple nodes, a list of identities
is returned. The semantics are that the node has joined the
respective list of entities. If a node is not a follower of any
entity, a new entity is created when join() is called and the
code of the new entity is returned.

The EMM also requires the application to implement a han-
dler for an upcall called leader(entity,on off). The upcall
contains an entity id as a parameter as well as a boolean that
tells the application that its node has just become or ceased
to be leader of the named entity. Application code would
typically check whether it is the leader or a member, and
execute the corresponding part of its typically distributed
data processing algorithm based on the assigned role.

The last part of the API is a store(entity,state) and
get(entity,state) call that allows the application on the leader
node to save and retrieve persistent state of a named entity.
The entity name is passed as input parameter to the call.
Typically, the leader would save its state after each itera-
tion. This state is transmitted in the EMM heartbeats to all
members of the entity. Upon leader handoff, the new leader
would use the above API to get the most recent previously
communicated state. It would then resume the iterative ap-
plication from that point onwards.

3.5 Entity Connection Module

The entity connection module (ECM) provides a basic end-
to-end location and communication service between mobile
entities. ECM is therefore the equivalent of UDP for sensor



networks, with the exception that destinations are migratory
entity leaders, not IP hosts. An application can utilize the
ECM’s API to communicate messages to and from logical
entities without concern for where that entity resides, how
it is maintained, or what particular nodes compose it. An
application programmer can therefore initiate queries and
interact with environmental events that migrate throughout
the sensor network.

The ECM exports a subset of a socket-like API. All appli-
cations are assumed to have well-known ports. In the cur-
rent protocol 256 ports are supported based on a byte in the
message header. We do not support dynamic application-to-
port binding. This is because in our target platform, namely,
Berkeley’s MICA motes running TinyOS, applications are
structured as a graph of permanently wired modules. The
ECM demultiplexes incoming messages as upcalls to dif-
ferent application modules depending on their port number.
The association of port numbers and upper layer modules is
defined in a compile-time configuration. At run-time an ap-
plication can call listen() to notify the ECM that it is ready
to receive messages on its assigned port. Subsequently, the
ECM propagates messages on this port to the application.
If a message arrives for a port on which no application is
listening, the message is dropped.

Connections are identified by a � Entity ID, Port Num �
pair. When an entity is spawned, entity registration is in-
voked by the ECM. This registration utilizes a directory
service similar to the indirection infrastructure described
in [35]. Namely, each entity maintains replicated pointers
to its current location in a region of the sensor network de-
termined by a hash function. The hash key is the signature
identifier associated with the entity. By hashing this key, the
ECM can determine the location of the directory region as-
sociated with a particular type of environmental event, then
query the directory for all entities that are currently follow-
ing events of that type. Queries to this directory service sup-
ply entity leader information pertinent to establishing mo-
bile connections.

When connecting with an entity, the ECM looks up the last
known entity leader based on the � Entity ID, Port Num �
pair provided in the application call. If this information is
older than a specified threshold the directory service is con-
tacted for updated information. The returned last-known
leader is used as a connection point for communication.
Upon receiving a message, an endpoint updates its table of
last-known leaders with that contained in the header. The
more traffic exchanged between the endpoints, the more up-
to-date the leader information is.

Leadership information is retained in the ECM in a limited-
size table. When the table is full, replacement is done on
a least-recently-used basis. The ECM of an entity periodi-
cally refreshes the directory region, at an interval called the

directory refresh rate to ensure that its information remains
up to date. In addition, past followers of an entity remember
the location of the last known leader for a time interval that
exceeds the directory refresh rate. Hence, messages sent to
the old location of an entity are forwarded to the current
location when they intercept the entity’s trail.

4 Simulation

To fully understand and validate our proposed architecture,
we implement our design in GloMoSim V2.03, a popular
wireless network simulator. GloMoSim was developed as a
modular library of components that contribute to an exten-
sible, robust, and dynamic simulation of wireless networks.
By isolating nodes’ communication layers into independent
modules, GloMoSim allows researchers to “plug and play”
different protocols (i.e. protocols that they develop and im-
plement) without concern for the inner workings of other ar-
chitectural layers. The simulation environment allows us to
apply our modules to the problem of event tracking. Specif-
ically, by simulating event tracking in GloMoSim using our
EMM and ECM modules, we are able to analyze the effects
of architectural parameters on performance and understand
how our architecture can be tuned to solve real world track-
ing problems.

4.1 Scenario

We modified the Transport and Application layers of Glo-
MoSim to simulate a hypothetical sensor network environ-
ment consisting of nodes communicating over a 220 meter
radius, which is typical for sensor nodes. The lower level
protocols of our wireless network include Geographic For-
warding [16] over IP in the Network layer and 802.11B in
the MAC layer. We simulated 32 byte packets sent in a 200
kbps wireless medium, a slightly larger bandwidth than the
capabilities of today’s sensor devices (50kbps-100kbps) to
account for future improvements. At the physical layer, we
use a Two-Ray Pathloss model with SNR-Bounded Noise
at the receiving node. The model allows noise, attenuation,
and subsequent loss on the wireless channel to be simulated,
as opposed to perfect reception within a hypothetical radius.

Sensor nodes are equipped with sensors that poll their envi-
ronment for specific events (e.g., acoustic sensors that mon-
itor and can recognize certain acoustic signatures such as
tank movement). In our experiments, a number of nodes are
uniformly distributed in a 1,400 x 1,400 meter field. To test
the ability of our architecture to track a moving target, we
simulate an object moving across the field in a straight line.
The moving object is tracked (presumably using acoustic or
magnetic sensors) with a sensor polling period of 0.05 sec-
onds, a granularity high enough to ensure up to date read-



ings. Sensors register a target up to a sensing radius of ap-
proximately 100 meters.

For our tests we employ a simple application that computes
an event’s position through entity member reports to the en-
tity leader. Entity members poll their sensors and send pe-
riodic updates to the corresponding entity leader notifying
this leader of their current sensor reading and position. The
leader computes the weighted average of the position of re-
porting entity members. The weighting is by sensor reading
since higher readings presumably mean a closer target. This
average value is sent back every 0.5 seconds to a “friendly-
force” entity at a static location in the network. Upon re-
ceiving a report, this entity responds with a confirmation
message sent back to the reporting entity. This feature al-
lows us to test our architecture’s ability to maintain end-to-
end connectivity and forwarding between entities.

4.2 Simulation Results

The objective of our simulation is to understand the effect of
algorithm parameters on tracking, as well as estimate costs
such as the energy consumed. In all experiments an en-
tity is spawned and migrates with the moving target. En-
tity uniqueness should be maintained for a run to be suc-
cessful. Hence, we count the number of entities that form
around the moving target during the course of a simulation
to determine whether or not our architecture was success-
ful in establishing and maintaining a single entity per event.
In energy cost experiments, we compute the energy con-
sumed during send and receive operations in accordance
with transmit and receive currents of the MICA motes [23].
CPU energy consumed constitutes a constant overhead.

Each point in the graphs below represents the average of 10
runs to ensure a statistical significance at the 0.05 level. In
the subsequent analysis when we claim a target is trackable
at a specified speed we mean that for all 10 trials, a sin-
gle entity was formed and tracked during each trial. The
two key parameters of the algorithm, whose settings de-
termine performance are the EMM leader heartbeat period
and the awareness horizon. This leader heartbeat period de-
fines how often the entity leader sends heartbeats to mem-
bers (and followers). The awareness horizon, in our exper-
iments, defines how many hops the heartbeats are propa-
gated. Other algorithm parameters are automatically com-
puted depending on the settings of the above two. Namely,
we require that the failed leader timer (used to detect leader
failure) be set to a value twice greater than the heartbeat pe-
riod to ensure that no member takes over leadership while
a current leader is still sending heartbeats. Similarly we re-
quire that the entity timeout period (used to free follower
nodes) be approximately 1.5 times the failed leader period
to ensure that no follower leaves the group before an en-

tity member could properly take over leadership and begin
sending heartbeats.

Below, we present and discuss those parameters that we feel
are most influential to the problem addressed and the solu-
tion presented. We initially start with those parameters that
are determined by the network or otherwise outside of the
designer’s control. We then analyze parameters that can be
set by the designer. For these graphs we choose to display
the heartbeat timer on the x-axis to analyze its affect on cho-
sen metrics. We vary the range of heartbeat values from
graph to graph to demonstrate trends in the timer and show
what we feel is the most relevant and interesting informa-
tion for understanding our architecture’s performance.

4.2.1 Setting Node Density
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Figure 3. Effect of node density on number
of groups formed (heartbeat period = 375 ms,
awareness horizon = 1 hop)

It is often assumed in sensor network research that the node
density is high enough to ensure that all nodes are within
communication range of several other nodes at all times.
We begin by understanding the effect of node density on
the performance of our algorithm. In this experiment, we
vary the number of nodes in the rectangular field, and ob-
serve the number of formed entities around the moving tar-
get. The experiment is repeated for different target speeds.
A run is successful if only one entity is formed. In the ex-
periments below, we choose the awareness horizon to be
one hop, which as we show later, represents a worst case
from the perspective of trackability at the target speeds con-
sidered.

Figure 3 demonstrates the results. We see that independent
of event speed, our architecture is capable of maintaining
the formed logical entity when the number of nodes is 200



or higher which corresponds to an average distance of about
140 meters between any two nodes. Thus, in the rest of this
section we fixed the number of sensor nodes to 200, as a
rough estimate of “sufficient” node density.

4.2.2 Effect of Leadership Handoff

Next, we explore the effect of the leadership handoff mech-
anism on performance. While our architecture includes a
leadership handoff mechanism that explicitly notifies entity
members when a new leader should be elected, we com-
pare that mechanism to the case where the old leader sim-
ply dies in which case a timeout must elapse before the new
leader election starts. Figures 4 and 5 compare the average
number of entities formed around the target for different tar-
get speeds with and without the handoff mechanism respec-
tively. For each target speed, we vary the leader heartbeat
period. Larger periods mean that more time will elapse be-
fore leader failure is noticed. Observe that the curves in
Figure 4 are generally lower than in Figure 5, indicating
a larger fraction of successful runs. Remember that each
point on each curve is the average of 10 runs. Points in-
dicating a single formed entity mean that all 10 runs were
successful. The handoff mechanism is more successful in
tracking since it avoids the extra delay in leadership hand-
off making it less likely that the target will move to where it
can be sensed outside of the awareness horizon, thus caus-
ing a spurious entity to emerge. Thus, in the rest of our
analysis we only consider simulations where our handoff
mechanism is present.

0

1

2

3

4

5

6

7

25 50 100 200 375 750 1500 3000 6000 12000

N
um

be
r 

of
 E

nt
iti

es
 F

or
m

ed

Heartbeat Period (msec)

3 m/s
6 m/s

12 m/s
24 m/s
48 m/s
96 m/s

192 m/s

Figure 4. Groups formed with our explicit
handoff mechanism (awareness horizon = 1
hop)

In addition, it is interesting how the choice of the heartbeat
period strongly influences our architecture’s ability to track

an event. Slow periods will result in a slower transition re-
sulting in the event migrating beyond the awareness hori-
zon. Fast periods result in a congested channel which in-
creases message loss and prevents nodes from hearing about
an approaching event. In between these extremes, an opti-
mal choice of the heartbeat period can be made. This choice
will be investigated in more detail later in the section.
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4.2.3 Limits on Heartbeat Period

Next, we analyze the overhead of the algorithm by explor-
ing the point at which it saturates the underlying network.
This saturation point depends on the setting of the heart-
beat period and the awareness horizon. It is fairly obvious
that decreasing the heartbeat period results in more frequent
communication between the nodes and therefore the ability
to track faster targets. This is based simply on the speed of
response necessary for faster targets. However, the band-
width limitations in the wireless medium place limits on
our timer settings and constrain our architecture’s ability to
track migrating events. To determine the bandwidth needs
of our algorithm, we start with a very small leader heartbeat
period (that saturates the network), then increase it gradu-
ally. We plot the resulting connection delay, which is the
time it takes to send a message from the moving entity to
the friendly-force entity. As the heartbeat period increases
to the point when the network is no longer saturated with
heartbeat traffic, we observe a sharp decrease in the con-
nection delay. Figure 6 shows this effect. The experiment is
repeated for different awareness horizons, expressed in the
number of hops that leader heartbeats are propagated to. It
is seen that when the horizon is increased, the onset of over-



load occurs earlier as more messages are communicated.
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Figure 6. Effect of timer settings on message
delay (speed = 12 m/s)

From Figure 6 we can see that the bandwidth of the wire-
less medium is fully saturated when the leader heartbeat
period is reduced to approximately 2.9, 5.9, and 11.7 ms
for an awareness horizon of = 1, 2, and 3 hops respec-
tively. To conservatively avoid this saturation point and
ensure enough bandwidth is left for alternate local traffic,
we multiply these numbers by 5 (i.e., limit the worst case
overhead of tracking to 20%). Hence, in the rest of the eval-
uation section, we consider only those leader heartbeat pe-
riods that are above 12.5, 25, and 50 ms for 1, 2, and 3 hops
respectively. We next turn our attention to the selection of
the leader heartbeat period and the awareness horizon, the
two key parameters of the algorithm, subject to the above
constraints.

4.2.4 Heartbeat Period and Awareness Horizon

Our group management protocol works by propagating
leader heartbeats a specified number of hops from the
leader, which determines the awareness horizon. Increasing
the hop count allows us to track faster events since it extends
the area in which nodes know about the oncoming event and
requires a faster event to migrate faster than its correspond-
ing logical entity. However as previously mentioned, the
awareness horizon restricts the maximum leader heartbeat
period, another important parameter of the algorithm. In the
following experiment, we study the coupling between these
parameters to analyze their affect on the maximum track-
able event speed. Specifically, we vary the leader heart-
beat period over a range above the pre-determined satu-
ration points, and compute for each period the maximum
event speed at which tracking always succeeds in maintain-

ing a single entity for the moving target. A different curve
is plotted for different awareness horizons.
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Figure 7. Trackable event speeds for varied
heartbeat period:awareness horizon settings

Figure 7 shows the results of the above experiment. Fol-
lowing the curves from right to left, we can see that up to
a threshold, reducing the leader heartbeat period results in
the ability to track faster events. However, at this threshold,
network collisions, congestion, and message loss become
dominant. Hence, the maximum trackable speed deterio-
rates. This is apparent from the sudden drop in the maxi-
mum trackable speed seen on the far left side of the graph
(about 100 ms). We also note that increasing the awareness
horizon increases the trackable speed for slower heartbeats,
but also congests the channel faster resulting in an inability
to track faster targets. In the graph we notice that the single
hop awareness horizon remains below the 2 and 3 hop set-
tings up until about 400 ms, the point at which all but the 1
hop settings begin to break down.

A designer’s decision to set the heartbeat period and the
awareness horizon should be guided by the limitations on
trackable speed shown in Figure 7. The trends seen in this
figure illustrate the fundamental trade-offs involved in pa-
rameter selection in our algorithm. While the axes can be
scaled depending on other platform settings such as node
spacing, the figure provides interesting insights into the
choice of protocol settings. For example, the figure shows
that for speeds lower than 120 m/s (i.e., slightly more than
half our communication radius per second) a designer has
a choice of heartbeat period and awareness horizon settings
that jointly allow a given speed to be tracked. The candi-
date settings are those that result from intersecting a hor-
izontal line (drawn at the desired speed) with each of the
three plots representing the different awareness horizons.
Each intersection point gives the heartbeat period needed



for the corresponding awareness horizon. In general, choos-
ing a larger awareness horizon implies a more relaxed (i.e.,
larger) heartbeat period. For example, to track a target of
speed 50 m/s, one can use a heartbeat period of 1600, 2900,
and 4200 ms for a horizon of 1, 2, and 3 hops respectively.
Interestingly, observe from Figure 6 that at those periods
the network is fairly underloaded. When the target speed
is higher than 120 m/s, however, larger values of awareness
horizon fail, since they present a higher percentage of mes-
sage loss and larger delays which allow spurious entities to
be created. At those speeds a smaller awareness horizon is
necessary.

If the designer has multiple choices, an important factor in
choosing a particular combination of parameters is power
consumption. The effect of parameter settings on power
consumption is explored next.

4.2.5 Energy Consumption

Aside from their influence on the maximum trackable
speed, the leader heartbeat period and the awareness hori-
zon also significantly influence message related energy con-
sumption. For different hardware this effect will vary. How-
ever, the fundamental trends remain consistent.
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Figure 8. Energy consumption for varied
heartbeat period:awareness horizon pairs

Figure 8 shows energy consumption for varying the leader
heartbeat period and awareness horizons explored in Figure
7. The effect of the heartbeat period on energy consump-
tion is significant. An interesting point to notice, however,
is that the alternative (horizon, period) tuples that track a
particular speed consume almost the same amount of en-
ergy. Following up on the example from the previous sec-
tion, the three alternative parameter tuples that track a speed
of 50 m/s, namely, (1 hop, 1600 ms), (2 hops, 2900 ms), and

(3 hops, 4200 ms), consume roughly the same energy of 4
units. This is seen by finding the intersections of the verti-
cal lines at 1600 ms, 2900 ms and 4200 ms with the energy
curves for the corresponding horizon. It therefore appears
that choosing a larger horizon does not have an advantage
as long as the heartbeat period is appropriately chosen. This
is intuitive. Increasing the awareness horizon allows using a
larger heartbeat period. However, it also increases the num-
ber of messages sent, since each heartbeat is flooded in a
larger radius. The net sum of messages exchanged, there-
fore, remains largely unaffected.

In view of the above, an argument can be made for smaller
horizons, since they reduce the number of nodes inhibited
from creating new entities, thus making the sensor network
more responsive to the advent of new events into the envi-
ronment. Nodes in a network with a large awareness hori-
zon will attribute measurements of such new events to the
entities they are already aware of; an effect that should be
avoided.

The set of experiments presented above illustrate the ability
of our architecture to track events at varied speeds in a suf-
ficiently dense sensor network. A system designer can em-
ploy this architecture, choosing the leader heartbeat period
and the awareness horizon in accordance with the expected
speed of migrating events, available bandwidth of the wire-
less medium, and energy restrictions (required system life-
time) of the hardware being deployed. An implementation
of our architecture on the MICA motes which is discussed
in the following section.

5 Motes Implementation

We implemented our work on the MICA motes developed
by X-Bow. Under our architecture we implemented a sim-
ple Geographic Forwarding [16] mechanism as well as a
simple buffering MAC protocol that follows a send when
ready strategy with no contention resolution. See [11] for
more information on the MICA platform and TinyOS Oper-
ating System.

Our MICA test bed consists of 24 motes laid out in a 12 X
2 grid with motes placed one foot apart. Nodes communi-
cate to neighboring nodes within a specified neighborhood
grid size (NGS). The awareness horizon is set to 1 hop in
accordance with the small size of the network. For our ex-
periments we tested NGS sizes of 2 and 4.

Nodes are employed with light sensors capable of detecting
a shadow cast by the tracked event. Our goal was to track a
rectangular object 1 square grid in size, moving at a speed
of 1 grid per 10 seconds (GrPS). Nodes are programmed
with our tracking architecture and an application which per-
forms target location estimation. Additionally, nodes are



Neighborhood 1/5 grid/s 1/10 grid/s 1/15 grind/s
2 5 4 1
4 3 1 1

Table 1. Entities formed over varied event
speeds on the MICA testbed

pre-configured to report a detected event to a fixed loca-
tion in the sensor network (node 0) every time the aggregate
event location changes.

Based on the limited bandwidth, energy restrictions, ex-
pected target speed, and radio radius of the MICA motes,
we experimented with and chose our heartbeat, failed
leader, and entity timeout timers to be 2, 5, and 8 seconds
respectively.

Figure 9. Reported location of tracked entity
on MICA motes (Speed = 1/10 GrPS, NGS=4)

Initial experimental data show that for speeds of 1/10, and
1/15 GrPS and a NGS of 4 grids, our architecture as de-
ployed was capable of correctly forming, maintaining, and
reporting the location of a group around the event of in-
terest. The reported path of the event for one such trial is
shown in Figure 9. In this experiment, the tracked vehicle
was traveling in a horizontal line from left to right as shown
by the horizontal axis in the figure. The jagged quality of
the reported path is a result of the limited number of motes
detecting and reporting a position for the target at any spe-
cific point in time. It is possible that when the communi-
cation radius and the speed of events vary, multiple entities
can be formed. Table 1 shows the number of entities formed
over different speeds in the MICA testbed. The creation of
spurious entities at faster speeds is due largely to the use of
an unreliable MAC layer in the experiments. Message loss,
as mentioned in the paper, allows spurious entities to be cre-
ated. The noisy nature of the measured track is due to the
fact that the light sensors do not provide a measure of dis-
tance from the target. Hence, the best one can do is simply
average the positions of all sensors detecting the event. In
contrast, other sensors (such as magnetic senors) can pro-
vide a better estimate of how far a measured target is. Tri-
angulation will therefore result in a much more accurately
estimated position.

Observe that the purpose of our experimental measurements

is to qualitatively illustrate the success of our scheme in
practice. It is not our purpose to compare experimental mea-
surements to simulation. We have purposely decided to use
a standard wireless MAC layer in the simulator instead of
the simplified unreliable custom MAC layer implemented
on the actual motes. Consequently, different performance
results are expected. We believe that the implementation of
the motes MAC layer will mature significantly in the future,
making it less interesting to seek quantitative performance
statements on the current testbed at this time.

6 Conclusions and Future Work

In this work we provide a transport layer solution to en-
tity maintenance and connectivity in sensor networks. Our
proposed middleware service provides a novel way for pro-
grammers to relate to events in the environment without
concern for topological and communication layer details ir-
relevant to their application. We establish entities in a one-
to-one relationship with events to ensure correct and well
defined behavior. Entities form and register with interested
parties to allow unique identification and communication
without regard for an event’s location.

The analysis of our architecture demonstrates the effect of
both uncontrollable (environment specific) and controllable
(architecture specific) parameters on entity formation and
maintenance. In accordance with an ideal sensor network,
we require that at any time at least one node is capable of
sensing the event being tracked. Under this assumption we
demonstrate our architecture’s capabilities and limitations
in tracking events of varied speeds as a function of the pre-
specified heartbeat and awareness horizon parameters. For a
large field of relatively dense nodes, we show in simulation
that our architecture is capable of tracking events that travel
over half of the communication radius of a node per second
(see Figure 7). Under optimal conditions in our simulation
study, our architecture was able to track objects moving at
about 88% of the communication radius. We additionally
discuss the required settings for tracking events of varied
speeds and the tradeoff of increasing the trackable speed
and thereby increasing the amount of energy consumed.

In addition to simulation analysis, we provide an imple-
mentation of our architecture on the MICA test bed in our
lab. In the presence of true fading and message loss we
demonstrate the feasibility of our work for a simple applica-
tion. Implementation results show the importance of a reli-
able MAC layer. Unlike the simulation, which used 802.11
to access the medium, the MAC layer in the implemented
prototype used unreliable transmission. Consequently, the
maximum tracked speed was significantly lower. The au-
thors are currently implementing a reliable MAC layer for
the motes platform. While our architecture provides the re-



quired mechanisms to create, maintain, and communicate
with abstract entities in an environment, we have only be-
gun to explore the possibilities of such sensor network re-
lated services. The applications and opportunities for sensor
networks remain vast and mostly unexplored. This paper is
a step towards a comprehensive coverage of research issues
motivated by tracking problems in sensor networks.
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