
SenQ: An Embedded Query System for

Streaming Data in Heterogeneous

Interactive Wireless Sensor Networks⋆

Anthony D. Wood, Leo Selavo, John A. Stankovic

Department of Computer Science
University of Virginia

{wood | selavo | stankovic}@cs.virginia.edu

Abstract. Interactive wireless sensor networks (IWSNs) manifest di-
verse application architectures, hardware capabilities, and user inter-
actions that challenge existing centralized [1], or VM-based [2] query
system designs. To support in-network processing of streaming sensor
data in such heterogeneous environments, we created SenQ, a multi-
layer embedded query system. SenQ enables user-driven and peer-to-
peer in-network query issue by wearable interfaces and other resource-
constrained devices. Complex virtual sensors and user-created streams
can be dynamically discovered and shared, and SenQ is extensible to new
sensors and processing algorithms. We evaluated SenQ’s efficiency and
performance in a testbed for assisted-living, and show that on-demand
buffering, query caching, efficient restart and other optimizations reduce
network overhead and minimize data latency.

1 Introduction

Wireless sensor networks enable fine-grained collection of sensor data about the
real world. Applications are growing in military, environmental, health-care,
structural monitoring, and other areas and many sensing modalities are now
available. Integrating them on embedded platforms and efficiently managing
their data remains a challenge due to application constraints on form-factor
and high cost sensitivity.

One growth area for wireless sensor networks is the health-care domain, which
already uses a wide variety of sensors, and could benefit from their dynamic de-
ployment. For example, based on an assisted-living resident’s health, a doctor
may give a box of sensors to place in the apartment or to be worn by the resident.
An emplaced sensor network provides a rich context for residents’ environmen-
tal conditions—but it must integrate with body area networks, embedded user
interfaces, and back-end control and storage. The result is a heterogeneous and
highly interactive wireless sensor network (IWSN) that presents new challenges
for query systems.

This work describes SenQ, an embedded query system for IWSNs that makes
several contributions to the state of the art:
⋆ Supported by NSF grants CNS–0435060, CNS–0626616, and CNS–0720640.

– We identify core requirements for emerging interactive wireless sensor net-
works (IWSNs) and present the design of SenQ, a query system for in-
network monitoring that addresses challenges from heterogeneity of: applica-
tion architectures, user interfaces, device capabilities, and information flows.

– SenQ flexibly supports both hierarchical application architectures and ad
hoc decentralized ones, by providing a stack with loosely coupled layers that
may be placed independently on devices according to their capabilities, and
by enabling in-network peer-to-peer query issue for streaming data. Its stan-
dardized software interfaces and protocol mechanisms support extensibility
for new sensors, processing algorithms, and context models.

– A novel shared stream abstraction uses virtual sensors to encapsulate com-
plex data processing and to discover and re-use dynamic user-created streams.

– Evaluation on a real implementation shows good performance of the software
stack: query caching with restart halves the internal first-data latency to
670 µs, and we show sampling rates up to 1 KHz with low jitter without
ADC DMA or other specialized hardware.
The features of SenQ enable embedded control loops, user reminders, real-

time delivery of body network data and other rich interactions within the system
that are not supported in any integrated way by existing query systems. We
evaluate SenQ in the context of AlarmNet [3], a testbed for assisted-living.

2 Research Challenges in Interactive WSNs

Emerging IWSN systems present research challenges and constraints that are
not satisfied by existing query system designs in an integrated way. Here we
identify the key challenges that SenQ addresses.
Heterogeneity. Diversity in IWSNs spans device types, capabilities, interface
modalities, user-created data flows, and system architectures.
Deployment dynamics. Because IWSNs are human-centric and interactive,
network membership and data flow patterns may change continuously.
In-network monitoring. Point-to-point data streams that remain entirely
within the network are needed for several situations. 1) Decentralized control

loops require fast access to sensor data to provide predictable performance.
2) Embedded user interfaces allow the ad hoc creation of data streams for per-
sonal consumption, and are a vital interaction method for applications.
Localized aggregation. Due to the heterogeneity of sensor types and infor-
mation flows in IWSNs, most spatial aggregation is within small areas, such as
a body area network that combines wearable accelerometer data to detect falls.
Resource constraints. Processor, energy, and memory capabilities of embed-
ded sensor and interface devices are limited, especially for unobtrusive wearable
devices with small form factors and low cost.

Data querying and management has received considerable attention in WSN
literature, but we are aware of no systems that comprehensively address the
additional requirements and challenges of interactive WSNs identified here. After
briefly reviewing related work, we present the design of SenQ in Section 3.

2.1 Brief Examples of Related Work

Emerging IWSN systems must support distributed data access not just by back-
end servers, but by users possessing a wide range of expertise. For traditional
back-end interfaces, we want to retain the benefits of declarative query languages
like that provided by TinyDB [1]. But they are unsuitable for most embedded in-

terfaces with limited capabilities. Virtual machines like Maté [2] and SwissQM [4]
provide a flexible programmatic approach useful for sophisticated in-network
processing, but their low-level abstractions and compilation and interpretation
overhead are not well suited for in-network query issue.

In TAG [5], sampling periods or epochs are sub-divided among nodes in a
path from the source to the sink. Data flows up the tree in a synchronized fashion
to ensure parents can receive and process the data before relaying it themselves.
TinyDB [1] distributes queries by flooding, and uses semantic routing trees to
prune the sensors involved in query execution. For relatively high-rate streams,
however, the delays involved in these approaches may be prohibitive.

TinyDB and Cougar [6] provide declarative query languages similar to SQL
that hide many of the details of network operation from the user and ease con-
struction of queries. However, textual query languages are less useful for em-
bedded user interfaces or sensor devices themselves, and efficiency suffers if the
queries must be relayed to a server for parsing and execution. SenQ provides
a uniform programmatic abstraction and network protocol that can be used
directly by embedded applications.

In the TENET architecture [7], only resourceful nodes are allowed to perform
data fusion in a strictly tiered network. VanGo [8] similarly requires the use of
micro-servers for adaptive processing. They take advantage of an ADC DMA
capability to provide high rate sampling, and have a static processing chain
compiled into the motes.

3 SenQ Query System Architecture

The requirement for decentralized, in-network monitoring had a large impact
on the design of SenQ, particularly its layered structure shown in Figure 1(b).
In a full system deployment, the lowest layers 1 and 2 (sensor sampling and
query processing, respectively) reside on embedded sensor devices. Since these
are heavily resource-constrained, the software must be efficient with small mem-
ory footprint. Layer 3 (query management and storage) resides on micro-server
gateways with more abundant resources, such as a connected database and back-
end systems. Layer 4 is a high-level declarative language, SenQL, similar to SQL
and TinyDB [1] for external user-issued queries. Due to space contraints, we only
present the design details of SenQ’s bottom two layers.

Arrows in Figure 1(b) show the nominal data flow: from query language to
micro-server for authorization, binding, and translation, into the WSN to the
sensor device where it is parsed and activated; then streams of data flow back
through the micro-server to the user’s interface.

Micro−Server Gateways

User Interfaces

PDA

Motion, Tripwire, ...
Temp., Dust, Light,

Body Area Networks:
Pulse, SpO2, BP, Fall,
ECG, Accel., Position

PC

Interfaces:
In−Network

SeeMote

Database Analysis
Back−End

Emplaced Sensor Network:

(a) Topology and components of
AlarmNet, a prototypical IWSN
for assisted-living.

Query Management

Sensor Sampling

SenQL Declarative
Query Language

and Data Storage3.

4.Q
u
e
rie

s

S
e
n
s
o
r

D
a
taQuery Processing and

Network Messaging

and Processing1.

2.

(b) SenQ query sys-
tem stack. In ad hoc
mode the upper two
layers are optional.

2

4
3

Embed.User Micro−
serverInterface UI

Sensors

1
2

4

1
22

3

(c) Loosely coupled layers
may be separated and placed
on heterogeneous devices as
resource constraints allow.

Fig. 1. SenQ supports both hierarchical and ad hoc architectures by maximizing layer
independence.

However, embedded user interfaces and sensor-initiated queries characteristic
of IWSNs are more efficiently supported when the upper layers are bypassed.
And not every system will have an architecture with centralized control, even if
only temporarily. For example, an elder wearing a body area network disconnects
from AlarmNet’s infrastructure (shown in Figure 1(a)) while visiting the doctor.
It is desirable for the body network to continue to monitor health status and
allow the doctor to query vitals in real-time. Other systems may use only sensors
and embedded UIs all the time in a low-cost ad hoc network topology.

To satisfy diverse application needs, we designed the layers of SenQ’s stack
to be loosely coupled with well-defined interfaces throughout.

3.1 Query and Data Model

To solve the research challenge of supporting significantly different information
flows simultaneously with low delay, SenQ provides snapshots and streams.

Streaming queries specify the sensor, sampling rate, processing chain, and
whether to perform local-area spatial aggregation. As data is collected, reports
are streamed back to the requester until a Stop command is received or an
optional maximum duration is reached. Snapshot queries provide efficient point-
in-time samples of raw sensor values that bypass the entire processing chain for
minimal response times.

For both types of queries, the returned sensor data is composed of <timestamp,

value> tuples. Query caching allows them to be efficiently stopped and restarted

later with a short command from the originator that minimizes communication,
parsing, and startup overhead.

Queries are uniquely identified in the network by <source address, ID> tu-
ples to allow multiple concurrent queries on sinks and sources—a requirement for
the interactive, peer-to-peer traffic flows in IWSNs. The 4 KB of data memory
on the MicaZ mote limits SenQ to 21 concurrent queries on each sensor.

3.2 Sensor Sampling and Processing Layer

In contrast to many environmental monitoring networks, IWSNs support a wide
variety of sensor types—there are currently twenty in AlarmNet. Sensor data is
accessed using internal components, external ADC channels, UART serial links,
or interrupts. This heterogeneity complicates the addition of new sensors.

The Sampling and Processing layer (shown in Figure 2) encapsulates access
to onboard resources to insulate applications from the complexity. Standard
interfaces for the sensor drivers and processing blocks allow them to be easily
incorporated and plugged-in (wired) at compile time, and enables the virtual
sensor feature described later in Section 3.3.

SenQ treats the sensor and processing types opaquely, so that old devices
ignore unknown types. This lets new sensor types be deployed dynamically into
the network without having to reloading code on existing devices, and maintains
continuity of operation for environments—such as health-care—where it is not
practical or safe to download new code and reset the system.

Sensor Drivers. Sensor drivers are
Sensor
Sampling &
Processing

SplitPhaseSensor PollableSensorEventSensor

Sensor Drivers

D
y
n

a
m

ic
 W

irin
g

SensorSample

Predicate

Report

Aggregate

MovingAvg

Collect
Samples

Key: Network messagesInternal flow

Fig. 2. Layer one in SenQ samples
and processes sensor data.

categorized by the timing and regularity
properties of their access, since these de-
termine the most efficient way for SenQ
to sample them. EventSensors generate
data sporadically as it becomes available,
such as from an interrupt, and so need not
be sampled periodically. SplitPhaseSen-

sor represents sensors which must read
and convert data upon request, such as
from analog sensors connected to an ADC.
Data is provided asynchronously to SenQ.
Data that may be quickly read synchron-
ously uses the PollableSensor interface.
Drivers also provide a SensorInfo inter-
face to aid runtime discovery of nodes’ capabilities and types.

Physiological sensors in AlarmNet include pulse oximetry (Harvard [9] and
UVA designs), wearable two-lead electrocardiography (Harvard [9]), and body
weight and blood pressure devices by A&D Medical. Long-running background
streams monitor residents’ environmental conditions, such as air quality, light,
temperature, and humidity. Sensors detect motion and activity to inform context-
aware back-end algorithms using PIR motion, optical tripwires, magnetic reed
switches, and wearable accelerometers for classifying movement-based activities.

Processing Chain. Some sensors require little in-network processing, but
for those that provide a high-volume of data, it is essential to reduce both the
energy cost and network congestion from sensor streams by filtering at the source.

Above the hardware and sensor drivers is a group of modules comprising a
scheduler and data processing chain, collectively called the Sampler. They act
in concert to manage sensor sampling for multiple concurrent queries, and filter
generated data according to the application query.

Processing modules provide a ProcessControl interface with standard control
and configuration methods. These allocate structures, pass query configuration
to the process, and supervise sampling. As with sensor drivers, the interface
eases the extension of SenQ to new, application-specific processing algorithms.

DataProducer interfaces on each block provide incoming and outgoing paths
for sensor data. Instead of a static sequence (as in VanGo [8]), blocks are wired
to a dynamic data flow coordinator. This provides more flexibility to the appli-
cation, since each query has its own ordering of the processing chain.

The SensorSample module maintains a schedule for sensor sampling to satisfy
multiple ongoing queries. A single timer tracks the next sampling operation.
Upon expiry, data is requested from the driver according to its category, Event,
SplitPhase, or Pollable. When data is available it is propagated up the processing
chain to the next consumer, as determined by the query’s dynamic wiring.

All queries that have concurrently requested the same type of sensor data
are notified upon its availability. This sample caching is necessary to promptly
service queries despite the limited bandwidth of the ADC.

SenQ provides an optional Aggregate module that is optimized for functions
or descriptive statistics that can be calculated while keeping little state. In addi-
tion, a “latch” aggregator is provided for polled binary EventSensors. An event
that occurs within a report period will be remembered until the next report.

The Aggregate module works in conjunction with the Report module, which
drops intermediate samples until a specified period has passed. Then the data
is passed to the next block in the chain, and the module flushes or resets the
intermediate results stored in the associated Aggregate module.

Specifying a report period longer than the sample period provides temporal

aggregation. For example, light may be sampled every second but only reported
every 4s, with intermediate results averaged by the Aggregate module.

An optional Moving Average mod-
Software Configuration Code Data

Base (4 query, 70B payload) 19010 1751

Process: Aggregate + 1016 + 36
Process: Aggregate + Report 1620 98
Process: Moving Average 968 240
Process: Predicate 602 44

Fig. 3. Memory consumption for pro-
cessing modules in bytes on MicaZ.

ule provides a windowed average, mov-
ing average, or exponentially-weighted
moving average (EWMA) with specified
window or α parameters.

Finally, queries may cull irrelevant
or redundant data by specifying rela-
tional Predicate filters. The query speci-
fies the argument values for comparison.

Figure 3 shows the memory tradeoff between the Aggregate and Moving Av-
erage modules. With four concurrent queries and a window of ten 32-bit elements,
the increase in data memory usage over the Aggregate + Report configuration is
142 bytes, but with 652 fewer bytes of code memory. The variety of such trade-
offs among applications and hardware platforms is the reason SenQ preserves
modularity of processing algorithms in the design.

Spatial Aggregation. IWSNs may not need to sample and aggregate sensor
data from the entire network, due to their heterogeneity. For example, although

aggregate environmental data is useful in AlarmNet, physiological and activity
data must not be mixed among residents.

Spatial aggregation is needed more often for collecting data from other nodes
in the local area, such as in a body area network. A flag in the stream query
specifies that the recipient is to act as the coordinator of a spatial query. This
coordinator node sends the query to its immediate neighbors, including its own
network address and sample ID.

Neighboring devices possessing the requested sensor type then process the
delegated query. Sensor data is sampled and flows up the processing chain, even-
tually passing through the Collect module. The samples are redirected over the
network to the query coordinator’s Collect module in a Sample message (shown
in Figure 2), where they are combined with local samples and inserted into the
coordinator’s processing chain.

Overall, the Sensor Sampling layer provides flexible mechanisms for access to
heterogeneous sensor types and extension to new ones. However, so far the data
is available only locally. For application and external access we need a Query
Processing layer, which is now described.

3.3 Query Processing and Network Messaging Layer

A Query Processing layer (Figure 4)

Query

Query

Query Parser

Query Issuer

Query Processing

Report

Disc.

Stream

& Messaging

Buffering

Discovery

Fig. 4. Layer two in SenQ may
stand alone or above the Sampler.

provides stream and snapshot abstractions
to local applications via a software API,
and remote ones via a network protocol.
Queries for local sensors allocate resources
in the Sampling and Processing Layer be-
low, configure the processing chain, and
start collection of data. Data is buffered
(if the query allows) and reported to the
originator, whether local or remote.

SenQ provides location transparency with respect to embedded applications,
since they use the same interface to issue queries for local or remote sensors, and
the networking aspects are hidden behind a QueryProcessor software interface.
Queries for remote sensors are marshalled and routed to the destination, while
local queries are managed by the resident Query Processing and Sampling layers.

Embedded query issue capabilities distinguish SenQ from most existing so-
lutions and open many possibilities for smart in-network processing, human
interactivity, and embedded control loops. This accrues particular benefits in
decentralized, large-scale networks where many data flows exist. Centralized ap-
proaches like TinyDB [1] and SwissQM [4] do not cater well to networks in which
many point-to-point streams are dynamically created between embedded query
issuers and sensors.

Control loops can be embedded in the network so, for example, a light con-
troller sends long-lived queries to a room’s door or motion sensors and acts
directly and locally on the lights. Control input, decision, and actuation are all
close to the data source and suffer lower delays than a centralized approach.

SenQ maximizes layer independence to provide flexibility for heterogeneous
platforms and architectures. An embedded device with no sensors includes only
a Query Processing layer, so it can issue queries. In AlarmNet, the MicaZ-based
SeeMote [10] (shown at right) includes SenQ, a graphics library, and a real-time
data visualization application in only 4KB of SRAM.

A Discovery component allows an embedded application to
locate nearby devices, sensor types, and processing modules.
Rather than relay queries through the gateway, which incurs
extra delay and energy costs, smart sensors can discover each
other and issue queries directly.

Virtual Sensors. User-driven creation of data streams in
an open environment is a central characteristic of IWSNs, and
a query system should support three classes of users: developers, application
domain experts, and the ordinary user. An “ordinary user” of an IWSN could
be an assisted-living resident, an elder or soldier recovering at home from an
injury, or a student immersed in a campus-wide sensor network.

High-level declarative languages are good for application experts knowledgable
about relational database abstractions and the capabilities of the system. How-
ever, these languages are a poor choice for system developers who must create
specialized processing algorithms, and as a basis for network protocols they are
too verbose and require complicated parsing.

SenQ enables a developer to use its embedded query issue capabilities to
collect data streams from both local and remote sensors for custom processing,
and then export the results as a virtual sensor at the bottom of the stack that
conforms to the sensor interfaces described in Section 3.2. This encapsulates the
complex, hierarchical stream processing as a low-level sensor type that can be
discovered, queried, and viewed as any other.

Shared Streams. Declarative and programmatic access methods support
domain experts and developers—but they do not consider the ordinary user.
This user may face challenges of: 1) unfamiliarity with relational databases and
programming, 2) embedded interfaces with poor input capabilities, and 3) un-
certainty of domain parameters (e.g., age-appropriate “normal” heart rates).

Shared streams build on the virtual sensor capability to address these chal-
lenges. A domain expert crafts a custom stream Q at runtime using an appro-
priate interface, and enables sharing of the query. The Query Processing layer
dynamically allocates a virtual EventSensor VS in the Data Sampling layer, and
then the Discovery component advertises VS as a primitive sensor type. When
a new query Q′ is received for VS, the Sampling layer recursively activates the
Query Processing layer for query Q.

Together, virtual sensors and stream sharing enable novel ad hoc user-to-user
interactions in the IWSN that are usually outside the scope of other query ap-
proaches. Systems using TinyDB or Cougar for declarative data access, or Maté
or SwissQM for virtual machine-based access would have to develop additional
protocols or user interfaces to provide this capability. By supporting re-use of

custom-crafted sensor streams, SenQ helps to address the challenges of providing
open access to ordinary users.

Network Efficiency. The query processing layer uses several techniques to
maximize performance for streams in resource-constrained embedded systems.

Combining multiple samples received by the Query Processor into a single re-
port message saves overhead and reduces radio traffic—at the expense of latency.
Query originators may specify full buffering or on-demand buffering.

On-demand buffering is used when a sample has been received in the Query
Processor and is ready to be transmitted, but the outgoing message buffer is busy
due to channel congestion. This incurs less average latency than full-buffering
(though has more overhead) and avoids dropping high-rate samples. It represents
a tradeoff between latency and loss.

Reports with data are timestamped to allow the receiver to properly sequence
the data and detect drop-outs, in case the underlying routing provides out-of-
order delivery or messages are lost in-transit. Reports also bear status changes,
such as positive and negative acknowledgements with cause codes, which are
important for meaningful user feedback on embedded UIs.

Compacting reports reduces energy wasted in the transmission of redundant
data. Other compression schemes, such as run-length encoding, can be added as
processing plug-ins if an application warrants the additional computation.

Memory constraints of WSN devices limit the number of queries that may
be simultaneously serviced or stored. Inactive queries are replaced using a least-
recently used policy to maximize the ability of applications to restart them later.
Restarting a cached query that has already been parsed and configured is twice
as fast as issuing a new one.

3.4 Query Management and SenQL Layers

Upper layers in Figure 1(b) are described here only briefly due to lack of space.
In hierarchical networks, a Query Management layer provides services that

are important for usability, context-awareness, connectivity, and data analysis. It
manages device registration and client connections, and maps queries for abstract
entities (e.g., people and places) onto particular devices.

The SenQL layer provides a declarative query language to users, allowing
them to specify what data is desired independent of how it will be collected. It
uses a constrained subset of SQL–99 with extensions for SenQ functionality.

4 Evaluation

We present SenQ’s consumption of memory and CPU resources and show the
performance limitations of the sampling and processing chain to demonstrate
runtime efficiency.

4.1 Resource Consumption and Efficiency

The program and data memory required for SenQ depends on three application-
specific parameters: the size of TinyOS messages, the sensor drivers linked in,

400us 500us 600us 700us 800us 900us

ADC

parse, configureQueryProc.
start()

report

dataReady()

Predicate

Aggregate

S. Sampler

Collect

Report

100us0 200us 300us

(a) A timing diagram showing receipt of a stream
query, message parsing, Sampler configuration,
and propagation of first datum up the processing
chain until a report is ready to send.

Query Operation mean stddev

Stream start (initial) 654.18 176.352
(subseq.) 217.62 0.003

Stream stop 36.93 2.639
Stream restart 267.10 10.904
Snapshot 601.05 1.745
Snapshot restart 301.28 1.684

(b) Time in µs from start of opera-
tion until first report is ready (if ap-
plicable). Does not include 366.42µs

ADC time. 100 trials.

Fig. 5. SenQ timing measurements on the MicaZ mote.

and the number of maximum concurrent queries supported. Table 1 shows the
size in bytes of TinyOS applications with different parameters. In the minimum
configuration, all non-query related modules (such as localization, configuration,
etc) are removed from the mote application that runs in AlarmNet. No sensor
drivers are included, and the default TinyOS message length is used. The code
takes about 16KB, with 711B data memory. A configuration more typical for use
in AlarmNet is also shown: “Base” provides access to the internal mote voltage,
supports four concurrent queries (per-node), and uses 70 byte payloads. Each
included sensor driver requires code and data memory in addition to the Base.

We measured SenQ’s load on the Software Configuration Code Data

Minimum
(no sensors, 1 query, 29B payload)

16756 711

Base
(voltage, 4 queries, 70B payload)

18830 1576

Sensor: Blood Pressure + 698 + 29
Sensor: Pulse, SpO2, Heartbeat 1140 32
Sensor: ECG (Tmote Sky) 138 4
Sensor: Scale 1366 27
Sensor: Dust 414 25
Sensor: Motion, Light 594 0
Sensor: MTS300 (temp, photo) 1524 33
Sensor: MTS310 (+accel, mag) 2032 45
Sensor: Switch 502 4
Sensor: Tripwire 2834 76
Sensor: Fall 4654 105

Table 1. Memory consumption for sensor drivers
in bytes. Includes required TinyOS components
(radio, timer, ADC, etc). Values for sensors are
relative to the Base configuration.

sensor device using an Intronix Logic-
Port logic analyzer. This gave accurate
profiling of processing times with very
little measurement overhead.

A timing trace from one experiment
shows the relative magnitudes of pro-
cessing times (shown in Figure 5(a)). A
stream query samples the node’s inter-
nal battery voltage every 73 ms, with
no processing or buffering in the Query-
Processor. The timeline starts when the
query is received from the network, and
shows the time to parse it, allocate data
structures, and configure and start the
Sampler (358 µs).

SensorSampler started the sampling timer and requested data from the Volt-
age driver (50 µs). ADC conversion takes 25 ADC clock cycles, or 366.42 µs from
the request until the data is available. Then the SensorSampler propagates it up
the processing chain. Since no processing was specified, it reaches the QueryPro-
cessor 68 µs later.

QueryProcessor generates a report immediately since buffering is not enabled.
The total time spent on the first sample is 918 µs, of which 366 µs is waiting for

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 0.25 0.5 1 2 4 8 16 32

A
c
tu

a
l
P

e
ri
o
d
 (

m
s
)

Specified Sampling Period (ms)

ideal (equal)
minimum

maximum
mean, stddev

(a) Specified versus actual (measured)
sample period for over 300 trials. The
ideal linear plot, when specified equals ac-
tual, is also shown. Timer performance
degrades for S <= 1 ms.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.25 0.5 1 2 4 8 16 32

P
e

rc
e

n
t

o
f

s
a

m
p

le
s

Sample Period (ms)

Samples per Report

one
two

three
four
five
six

seven
eight
nine
ten

eleven

(b) Distribution of report sizes resulting
from on-demand buffering during conges-
tion. The percentage of variable-sized re-
ports bearing 1–11 samples is shown.

Fig. 6. SenQ sampling jitter for a processing- and transmit-intensive query, and impact
on on-demand buffering.

the ADC. Subsequent samples begin at the SensorSampler module when the
sample timer fires.

The mean and standard deviation of worst-case execution times from 100
trials are shown in Figure 5(b) for each query operation. Queries sampled bat-
tery voltage, used mean aggregation, a range predicate filter, no buffering, and
four-bytes of reported data. These parameters together give the largest possible
execution overhead of a non-coordinated (spatially distributed) query.

Even on the 8 MHz MicaZ, these worst-case execution times leave most CPU
resources for application demands. At a sampling rate of 100Hz, the steady-state
overhead of SenQ is only 2.18%.

4.2 Sampling Performance

The maximum effective sampling rate of SenQ depends on the execution over-
head (described above) and the query’s sampling rate. As the sampling rate
increases beyond a point, we expect to see worse performance in sampling jit-
ter and dropped messages or samples. This is especially true due to the limited
processing capability of the MicaZ and the non-real-time design of TinyOS.

To find SenQ’s limits on sampling, we use a stream query with relatively
costly parameters: mean aggregate, range predicate filter, four-byte data size,
and no buffering so a message is transmitted for every sample. The timing was
captured precisely by the logic analyzer.

Figure 6(a) shows sampling jitter (difference from the requested rate) as the
sampling rate varies from 4 KHz to 32 Hz. We focus on small sampling periods
here, where difficulty is more likely to occur. The actual sampling rate tracks
the specified rate closely down to 2 ms, with low variance and only occasional
aberrations as shown by the plotted maximum. Below 1 ms, the microprocessor
fails to service the timer as fast as requested, due to frequent radio and ADC

interrupts and high CPU utilization from SenQ and other tasks. Without DMA
to lighten the load on the microprocessor, it saturates.

Congested conditions benefit from SenQ’s on-demand data buffering, shown
in Figure 6(b). When message transmission became a bottleneck at around a
4 ms sampling period, reports included more samples. At 0.25ms, half of the
reports included nine or more samples. A maximum sample loss of 11% was
recorded at the sender for these trials. By applying this aggregation at the data
source, network overhead is reduced while low latency and loss are preserved.

5 Conclusion

SenQ supports heterogeneous device types, user interfaces, data flows, processing
algorithms, and application architectures. Network load and energy consumption
is reduced by using temporal and spatial aggregation, filtering at data sources,
data compaction, and on-demand report buffering. Virtual sensors and stream
sharing enable rich user interactions, and embedded interfaces and sensor devices
can issue queries without the aid of powerful back-end servers. SenQ enables
distributed smart networking for the kind of interactive systems we expect to
see in the near future.

References

1. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: An acqusitional
query processing system for sensor networks. ACM TODS 30(1) (2005) 122–173

2. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. In: Proc.
of ASPLOS. (2002) 85–95

3. Wood, A., Virone, G., Doan, T., Cao, Q., Selavo, L., Wu, Y., Fang, L., He, Z., Lin,
S., Stankovic, J.: ALARM-NET: Wireless sensor networks for assisted-living and
residential monitoring. Technical Report CS-2006-11, Department of Computer
Science, University of Virginia (2006)

4. Müller, R., Alonso, G., Kossmann, D.: A virtual machine for sensor networks. In:
Proc. of EuroSys. (2007) 145–158

5. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgre-
gation service for ad-hoc sensor networks. In: Proc. of OSDI. (2002) 131–146

6. Yao, Y., Gehrke, J.E.: The Cougar approach to in-network query processing in
sensor networks. SIGMOD Record 31(3) (September 2002) 9–18

7. Gnawali, O., Greenstein, B., Jang, K.Y., Joki, A., Paek, J., Vieira, M., Estrin, D.,
Govindan, R., Kohler, E.: The TENET architecture for tiered sensor networks. In:
Proc. of SenSys. (2006) 153–166

8. Greenstein, B., Mar, C., Pesterev, A., Farshchi, S., Kohler, E., Judy, J., , Estrin, D.:
Capturing high-frequency phenomena using a bandwidth-limited sensor network.
In: Proc. of SenSys. (2006) 279–292

9. Malan, D., Fulford-Jones, T., Welsh, M., Moulton, S.: Codeblue: An ad hoc sensor
network infrastructure for emergency medical care. In: Proc. of BSN. (2004)

10. Selavo, L., Zhou, G., Stankovic, J.A.: SeeMote: In-situ visualization and logging
device for wireless sensor networks. In: Proc. of BASENETS. (2006) 1–9

