cs 101 Pledged

Homework 7
Assigned in Laboratory 11
Due Start of Laboratory 13

Please perform the following activities in groups of up to three people. Although you are allowed to talk with other
people outside your group regarding assignment requirements and debugging, the work of each group must be its
own—code must not be shared from one group to another.

Assignment files

A self-extracting archivéw07.exe has been created for this assignment. Archw@7.exe can be acquired by
accessing the course home pagev.cs.virginia.edu/cs101 or on many of our university servers in the direc-
tory F:\public\csfiles\cs101\hw . If you are copying this file using a web browser, first copy the file to a hard
drive and then use the file manager to copy the file to a floppy if need be.

Objective
Demonstrate array manipulation and member function implementation.
Problem statement

A popular gaming activity is traversing a maze to find a path from the starting point to finishing point. An example
maze is shown in the following figure.

B Sunday driving =] B3

In this maze, the starting point is the small lightly colored spot in the upper left corner. The finishing point is the small
square near the lower right corner. The dark areas reprga#istand the lighter areas between the wallscargi-

dors. The above maze has no free standing wallBed standing walls one that is not connected to the perimeter
wall. A maze with no free standing walls is callegraper maze The maze can be represented in part as a two-
dimensional grid. Initially, each grid element is either an obstacle (part of a wall), free for traversing, starting point, or
ending point. Later, some initially free grid elements will be marked seen.

Proper mazes can be solved by using the right-hand strategyigitieand strategysays to walk along the maze

with your right hand constantly sliding along the wall. By doing so, you will eventually reach the finishing point.
Note that the right hand strategy does not guarantee that you will find the shortest path through the maze. This limita-
tion does not matter for our purposes.

To have a notion of right-sidedness, we also need to have a notion of our current direction. We will consider north to
be the direction that heads towards the top of the maze; south to be the direction that heads toward the bottom of the
maze; west to be the direction that heads to the left side of the maze; and east to be the direction that heads to the right
side of the maze.

CS 101 Page 1 of 6 Fall 1996

cs 101 Pledged

Using the above maze and starting off facing east with the right-hand strategy, we will first step one-unit east, then
step one-unit south, then step four-units east (taking individual steps), then step two-units south (taking individual
steps), then step four-units west. We next step one-unit south. Our current progress is shown graphically in the follow-
ing figure.

B Sunday driving =] 3

At this point the right-hand strategy forces us to retrace our steps in the opposite direction. However, when we reach
the entrance of this dead end corridor, we will being facing east. (When we had first reached this point, we were fac-
ing south). Because we are facing east, our next step with the right-hand strategy will be one-unit south. The current
situation is depicted in the following figure.

B Sunday driving =] B3

Observe in the preceding figure as we retrace our steps, only the outline of the errant steps is depicted.

CS 101 Page 2 of 6 Fall 1996

cs 101 Pledged
A complete trace of where the right-hand strategy takes us is given in the following figure.

B Sunday driving =] 3

For this assignment, we will conduct a simulation of the right-hand strategy through a maze. For this simulation there
are two important objects, the maze and the wanderer. We will develop classes for both such objects. Agitnction
Main() will use these classes to instantiate a maze and a wanderer.

The simulation will be developed using the projectdiliee.ide . This project is composed of several files.

¢ Maze.cpp : Implementation of thilaze class. You will be required to complete several of the member func-
tions.

e Wander.cpp : Implementation of th&vanderer class. You will be required to complete several of the mem-
ber functions.

e Drive.obj : Contains a compiled-version ApiMain() that controls the simulation. The compiled imple-
mentation of the right-hand strategy is in this file. FuncfipiMain() will prompt the user for the name
of a file that contains the description of the maze. A sample datadildat is supplied as part of the
archivehw07.exe .

e Ezwinlib : The compiled library version of the EzZWindows library.
The filesmaze.cpp andwander.cpp include respectively the header fileaze.h andwander.h . These header
files along with the previously-mentionedp andobj files are part of the archivev07.exe . The header files do

not require any modification on your part. To get a sense of what you must implement, we provide listamgshof
andwander.h .

CS 101 Page 3 of 6 Fall 1996

Cs 101

File maze.h

enum LocationStatus { Free, Obstacle, Start, Finish, OutOfBounds, Seen};
class Maze {
enum MaxMazeDimemsions { MaxRows = 20, MaxColumns =30 };
public:
Maze(int length, int width, istream &sin, SimpleWindow &W);
LocationStatus Status(int r, int c) const;
void Display() const;
int GetStartRow() const;
int GetStartColumn() const;
int GetFinishRow() const;
int GetFinishColumn() const;
void SetStatus(int r, int ¢, const LocationStatus &s);
private:
void DrawBackground() const;
void DrawObstacle(int r, int c) const;
void DrawStart() const;
void DrawFinish() const;
void SetAllFree();
void ExtractStart(istream &sin);
void ExtractFinish(istream &sin);
void ExtractObstacles(istream &sin);
LocationStatus Grid[MaxRows][MaxColumns];
int NumberRows;
int NumberColumns;
int StartRow;
int StartColumn;
int FinishRow;
int FinishColumn;
SimpleWindow &MazeWindow;
2

File wander.h

enum Direction {North, South, East, West};
class Wanderer {
public:
Wanderer(int r, int ¢, SimpleWindow &W);
void MoveNorth(Maze &M);
void MoveSouth(Maze &M);
void MoveEast(Maze &M);
void MoveWest(Maze &M);
void LookNorth(const Maze &M) const;
void LookSouth(const Maze &M) const;
void LookEast(const Maze &M) const;
void LookWest(const Maze &M) const;
Direction IsFacing() const;
void Draw() const;
int GetRow() const;
int GetColumn() const;
private:
Direction Facing;
int CurrRow;
int CurrColumn;
SimpleWindow &MazeWindow;

Cs 101 Page 4 of 6

Pledged

Fall 1996

cs 101 Pledged

Library Maze implementation

The maze library defines the enumerated tipeationStatus to specify the following symbolic constants:
Free , Obstacle , Start , Finish , andOutOfBounds . The library also defines the clagdaze.
The classvlaze has the following data members.

¢ NumberRows: Number of rows in the maze.

¢ NumberColumns : Number of columns in the maze.
e StartRow : Row coordinate of starting point.

e StartColumn : Column coordinate of starting point.
e FinishRow : Row coordinate of finishing point.

e FinishColumn : Column coordinate of finishing point.
« MazeWindow: Reference to th8impleWindow in which all graphical displays are performed.
e Grid : A multidimensional array whose elements are of tygmationStatus . ElementGrid[r][c] indi-
cates the status of tleeth spot in the -th row of the maze.
The clasdvlaze has the following member functions already implemented.

e Maze(int length, int width, istream &sin, SimpleWindow &W). This constructor uses length and
width to set the number of rows in the maze; it uses input stseanmand member functionBxtract-
Start() , ExtractFinish() , andExtractObstacles() to extract the makeup of the maze; it uses
to initialize MazeWindow.

« Display() : displays a graphical representation of the maze. It uses several private member functions that
you must implement.

e Status(int r, int c) : Inspector that returnslacationStatus value that shows how theeth spot in
ther -th row of the maze is being used. If the position does not lie on the maze, thOw&@@ounds is

returned.
e GetStartRow() :Inspector that returns the row of the starting position.
e GetStartColumn() : Inspector that returns the column of the starting position.
e GetFinishRow() : Inspector that returns the row of the finishing position.
e GetFinishColumn() : Inspector that returns the column of the finishing position.

The classvlaze needs the following member functions implemented by you.

e DrawBackground() : Draws aMagenta rectangle taiMazeWindow whose dimensions match the size of the
maze being represented. The center of this rectangle is the ceMizred/indow.

e DrawObstacle(int r, int c):Draws a1l by Blue rectangle at locatiorc(+ 0.5,r + 0.5).

e DrawStart() :Draws a 0.35 by 0.38ellow rectangle at locatiorc(+ 0.5,r + 0.5) where andc are the
row and column locations of the starting point.

e DrawFinish() : Draws a 0.35 by 0.3%ellow rectangle at locatiorc(+ 0.5,r + 0.5) where andc are the
row and column locations of the finishing point

e SetAllFree() : Sets all elements @rid to LocationStatus Free .

e ExtractStart(istream &sin) : Extracts two integer values from the input stresitm and uses these val-
ues to set data memb&trtRow andStartColumn

e ExtractFinish(istream &sin) : Extracts two integer values from the input stresim and uses these
values to set data memb@igishRow andFinishColumn

e ExtractObstacles(istream &sin) : Extracts until end of file is reached pairs of integer values. Each

pair correspond to a row and column location of the maze whmsgionStatus value isObstacle ,
i.e., the corresponding element@fid is set taObstacle

e SetStatus(int r, int ¢, const LocationStatus &s) : Sets theGrid element corresponding to the
c-th spot in the -th row to status.

CS 101 Page 5 of 6 Fall 1996

cs 101 Pledged

Library Wanderer implementation

The wanderer library defines the enumerated Bipection to specify the following symbolic constanksorth ,
South , East , andWest. The library also defines the clasgnderer for representing a vehicle.
The classwanderer has the following data members.

¢ Facing : Indicates which direction the vehicle is currently facing.

e CurrRow : Indicates the current row coordinate of the vehicle.

e CurrColumn : Indicates the current column coordinate of the vehicle.

« MazeWindow: Reference to th8impleWindow in which all graphical displays are performed.

The classwanderer has the following member functions already implemented.
¢ GetRow() : Inspector which returns the current row coordinate of the vehicle.
e GetColumn() : Inspector which returns the current column coordinate of the vehicle.
e IsFacing() :Inspector which returns the current direction of the vehicle.

The classvanderer needs the following member functions implemented by you.

e Wander(int r, int c, SimpleWindow &W). Initializes the vehicle so that its starting location isdfth
column of the -th row. It does so by setting data memhgusrRow andCurrColumn ; it sets data member
Facing toEast . Reference data memhdazeWindow to Win the member initialization list.

¢ MoveNorth(Maze &M): Cause€urrRow to be updated to reflect the vehicle has moved northward one unit.
Data membeFacing is set tadNorth . The status of the newly visited positionMiaze Mis sent tcSeen. A
move that would cause the vehicle to go off the maze causes an error message and no movement.

¢ MoveSouth(Maze &M): CauseurrRow to be updated to reflect the vehicle has moved southward one unit.
Data membeFacing is set tadSouth . The status of the newly visited positionMiaze Mis sent t&Seen. A
move that would cause the vehicle to go off the maze causes an error message and no movement.

¢ MoveEast(Maze &M): CauseLurrColumn to be updated to reflect the vehicle has moved eastward one
unit. Data membeFacing is set toEast . The status of the newly visited positionNtaze Mis sent to
Seen. A move that would cause the vehicle to go off the maze causes an error message and no movement.

*« MoveWest(Maze &M): CauseCurrColumn to be updated to reflect the vehicle has moved westward one
unit. Data membeFacing is set toWest. The status of the newly visited positionNtaze Mis sent to
Seen. A move that would cause the vehicle to go off the maze causes an error message and no movement.

¢ LookNorth(const Maze &M): Returns the status of the maze elememaze Mto the immediate north of
the vehicle’s position.

e LookSouth(const Maze &M): Returns the status of the maze elemeane Mto the immediate south of
the vehicle’s position.

e LookEast(const Maze &M): Returns the status of the maze elemeMane Mto the immediate east of the
vehicle’s position.

e LookWest(const Maze &M): Returns the status of the maze elememanre Mto the immediate west of the
vehicle’s position.

e Draw() : A 0.5 by 0.5Cyan rectangle is drawn tlazeWindow at location ¢ + 0.5,r + 0.5) wherg andc
are the current row and column locations of the vehicle.

Other notes

e Source filewander.cop andmaze.cpp are to be completed for your assignment. A hard copy of the two

files are to be handed in at the start of the scheduled laboratory and an electronic version is to be submitted
either prior to or at the start of that same lab. No other files should be submitted. If you have inadvertently sub-
mitted other files, please delete them. Do not delete the source files that you submitted for previous assign-
ments. Your files should contain the standard header. It should properly identify all members of your group. It
must contain the pledge. All group partners must be from the same lab section. There should be only one sub-
mission per group. The program should follow course programming style guidelines. The guidelines are con-
tained in the course workbook and on the course web page.

« If you decide to develop your program on a non-ITC machine, you must make modifications to the project file.
Instructions on how to modify a project file were given in the second programming assignment.

CS 101 Page 6 of 6 Fall 1996

