
9

LABORATORY 2

Attacking your first problem

OBJECTIVE

This laboratory provides you with your first opportunity to decompose a prob-
lem into manageable pieces and solve it. It will also introduce the process of
compiling a program that uses a library called an Application Programmer
Interface or API. You will probably be doing a few things that are new to you.
If you have any questions or problems, just ask your laboratory instructor for
help.

KEY CONCEPTS

■ Expression evaluation

■ Simple input and output

■ Hand checking code

■ Expressing mathematical equations inC++

■ Project files

GETTING STARTED

■ Using the procedures in the introductory laboratory handout, create the
working directory\cpplab on the appropriate disk drive and obtain a
copy of self-extracting archivelab02.exe. The copy should be placed in
thecpplab directory. Execute the copy to extract the files necessary for
this laboratory.

■ Many of the activities that are performed in the laboratory can be done in
groups but you should work the exercises yourself.

10 Attacking your first problem

2.1

SOLVING YOUR A, B, C’S
■ Examine the program below. Next to the insertion statements write what

you expect the output to be. If you have a partner, discuss your answers for
objectsa, b, c, andd with your partner. Come to an agreement on what the
values should be. If you cannot agree, talk to a laboratory instructor.

■ Start theC++ compiler as described in the opening laboratory. Open the
file calledsimpmath.cpp. It should contain the preceding program along
with several additional comments and output statements.

■ Build and run the program to observe the output.

■ Did you get the same answers for your manual calculations as you did
from the computer program? If there are differences, try to figure out why.
If you cannot determine the reason for the differences, ask a laboratory
instructor for help.

■ Allowing a user to supply input values is a better technique than hard-
coding the values because it makes the program more general. Now you
will modify simpmath.cpp to extract user input from the standard input
stream. First, delete the hard-coded initialization ofa, b, c, andd.

■ Add a prompt that tells the users of the program what you want them to do.
In this case, you want to prompt the user to supply a value for objecta.
Then add a statement to do the extraction. Your code might look like the
following:

int main() {
// Object definitions and initializations
int a = 3;
int b = 12;
int c = 6;
int d = 1;

// Now calculate the results
d = d * a;
c = c + (2 * a)
d = d - (b / c);
c = c * (b % c);
b = b / 2;

// Finally display the results
cout << "a: " << a << endl;
cout << "b: " << b << endl;
cout << "c: " << c << endl;
cout << "d: " << d << endl;

// Exit indicating a lack of errors
return 0;

}

cout << "Enter value for object a: ";
cin >> a;

Operation order is important 11

■ It is important to prompt the user for each object separately. So add lines
of code to the program that prompt the user to enter values for objectsb, c,
andd. Be sure to store the user’s keyboard input in the appropriate object.
Save the program.

■ Compile and run your improved program. Be sure to save the program
before each compilation and run. If you get an error message that you
cannot figure out, discuss it with your partner. If you cannot figure it out
together, ask a laboratory instructor for help.

■ After developing a program or modifying an existing one, a key question
is, Does the program run correctly? One way is tohand checkthe program.
Hand checking a program involves computing the results by hand for some
input and making sure the results agree with what the computer outputs for
the same input. You can hand check your modified program by using as
inputs the values that were used to initialize the integer objectsa, b, c, and
d in the original program. Run your program and enter the values that were
used to initialize the objectsa, b, c, andd in the original program. Did you
get the same results?

■ Once the program is working, demonstrate it to a laboratory instructor.✓

■ Close the file.

2.2

OPERATION ORDER IS IMPORTANT

Now let’s consider a slightly more challenging problem—writing the general
solution to an algebraic problem. Suppose you have a simple problem that you
wish to solve. You should take the following steps to write a program to solve
the problem:

— Determine the inputs and outputs.

— Define objects for inputs and outputs.

— Compute the answer (in parts, if it is complicated).

— Output the answer.

This process seems relatively straightforward, so let’s give it a try. For the next
part of the lab, you are going to write a program that solves the following equa-
tions:

■

■

✎

2a2 4a 29–+

4c ac+
3b

12 Attacking your first problem

■

■

You and your partner should work independently on the next several steps.

■ Determine the types of the objects. For these equations, you can use the
typefloat because three of the equations contain a division operation. If
you used integer objects, the result of the division operation would be
truncated, which would produce erroneous results.

■ Determine how many inputs and outputs there will be. Will you need any
temporary space to store partial computations? Or do you want to try
computing the larger problem with one huge equation?

■ List the definitions of all the objects you will need for input, output, and
temporary computations in the area provided below. We do the first
declaration for you.

float Result1;

■ Write the solution for each equation as it will need to appear inC++ code
in order to be correct. Pay particular attention to the order of operations in
each problem. Be sure to use parentheses () as needed to enforce the
correct computation of each problem. We do the first one for you. Does
your solution agree? If not, review your answers for it and the other
equations.

Result1 = (2 * a * a) + (4 * a) - 29;

10b 4a+
3c

cb
a

4 d⁄---------

+

10b 4a+
3c

cb
a

4 d⁄---------

+
10b 4a+

3c

cb
a

4 d⁄---------

+×

Operation order is important 13

■ Write theC++ solution to equation #2 here:

■ Write theC++ solution to equation #3 here:

■ Write theC++ solution to equation #4 here:

■ Compare your answers with your partner’s. Do they agree? Are they
equivalent but different? Once you have determined that your answers are
correct, open the filecompute.cpp.

■ Use this file as a basis for computing the above equations.

14 Attacking your first problem

■ Complete the program in that file. Save your work often. In particular,
always save it before you do a compile and run. Once it is working,
demonstrate it to a laboratory instructor.✓

2.3

EZWINDOWS
■ Close all the open files that you are using with theC++ compiler. Pull

down the Project menu and select Open project. Open the project
lawn.ide. A project file is a file that contains information that the
compiler uses to build an executable program or application.

Most applications of any size contain source code modules (i.e., files
containingC++ source code). In addition, they use libraries of routines that
have been written by professional programmers. The project file contains
information that, among other things, tells the compiler where to find the
necessary files to build the program and where to write the executable.

■ Depending upon your access permissions for theC++ compiler, when you
open a project, you can get errors regarding files the compiler cannot
create or write on the hard disk drive. Ignore these. A subwindow that can
lists the files in the project should appear. If the files needed to create
lawn.exe are not shown, click the plus sign (+) besidelawn.exe. You
should see something similar to the following window.

The necessary modules for this project are the EzWindows library and the
source fileprog3-5.cpp. The EzWindows library contains the code that
supports creating and manipulating graphical objects such as rectangles,
ellipses, and triangles. The library is described in detail in the Appendix.

■ In addition to the modules that are part of the application, the project file
specifies how to build the application, where to find the include files, and
where to write the executable. You can access this information through the
Project Options window. To view some of this information, pull down the

✎

EzWindows 15

Options menu and select Project. A window like the following should
appear:

From this menu, the programmer can tell the compiler where to look for
certain files. The Include path specifies where the compiler should look for
the include files. The Library path specifies where the compiler should
look for library files. These paths should already be set to the appropriate
directories.

Of interest to us are the Output directories. These specify where the
compiler should write files. For our laboratories activities, these should
contain the path where you placed the laboratory files (for example,
c:\cpplab). After making sure these fields contain the correct path, close
the Project Options window by clicking on the OK button.

■ To build and run an application that has a project file is simple. First click
on the lightning bolt button in the control bar area of the window. When
the program runs, respond to the prompts and observe the output the
program creates. Discuss the output with your laboratory instructor.✓

■ Close the windows created by the application and the message window.
Bring the Project window to the foreground. Point your mouse atprog3-
5.cpp in the Project window and double-click. A new window lists the
contents of the fileprog3-5.cpp. Examine the file and get a feel for what
the program is doing. One of the first things to notice is that there is no
function namedmain(). Because this program will be doing graphics
using the EzWindows API, the program conceptually begins execution in a
function calledApiMain().

■ Scroll in the source window and find the following lines:

// Open a window and display the lawn
SimpleWindow Display("Lawn and House Plot",
DisplayLength, DisplayHeight);

✎

16 Attacking your first problem

These lines create the window that contains the diagram of the lawn and
house and make it appear on the screen. Find the lines in the program
where the values ofDisplayLength and DisplayHeight are set.
Change these values to10 and12 respectively. Run the program again and
observe the difference in the size of the window created. Now change the
code that creates the window so that the string is

"Weedwacker's Lawn and Garden Service"

Run the program again and observe what happens.

■ Examine the following lines from the program:

These lines define and draw two objectsLawn andHouse. They represent
the lawn and the house. The type of these objects isRectangleShape. A
RectangleShape is an object that is defined in the EzWindows API. The
code

sends a message to the objectHouse telling it to draw itself on the screen.
Comment out this line and run the program. Show the display to your
laboratory instructor.✓

■ Exit from theC++ compiler.

■ You do not need to save the modified files.

2.4

FINISHING UP

■ Copy any files you wish to keep to your drive.

■ Delete the directory\cpplab.

■ Hand in your check-off sheet.

Display.Open();

RectangleShape Lawn(Display, DisplayWidth / 2.0,
 DisplayHeight / 2.0, Green,
 LawnLength * ScaleFactor,
 LawnWidth * ScaleFactor);
Lawn.Draw();
// Display the house
RectangleShape House(Display, DisplayWidth / 2.0,
 DisplayHeight / 2.0, Yellow,
 HouseLength * ScaleFactor,
 HouseWidth * ScaleFactor);
House.Draw();

House.Draw();

✎

