



## **Program Organization**

- C++ program
  - Collection of definitions, declarations and functions
  - Collection can span multiple files
- Advantages
  - Structured into small understandable units
  - Complexity is reduced
  - Overall program size decreases



- Object is a representation of some information
  - Name
  - Values or properties
    - Data members
  - Ability to react to requests (messages)!!
    - Member functions
- When an object receives a message, one of two actions are performed
  - Object is directed to perform an action
  - Object changes one of its properties



























'\t' is the explicit tab character, '\n' is the explicit new line character, and so on



# Floating-Point Object Types

- Floating-point object types represent real numbers
  - Integer part
  - Fractional part
- ♦ The number 108.1517 breaks down into the following parts
  - 108 integer part
  - 1517 fractional part
- C++ provides three floating-point object types
  - float
  - double
  - long double



#### Names

- Used to denote program values or components
- A valid name is a sequence of
  - Letters (upper and lowercase)
  - Digits
    - A name cannot start with a digit
  - Underscores
    - A name should not normally start with an underscore
- Names are case sensitive
  - MyObject is a different name than MYOBJECT
- There are two kinds of names
  - Keywords
  - Identifiers

### Keywords

- Keywords are words reserved as part of the language
  - int, return, float, double
- They cannot be used by the programmer to name things
- They consist of lowercase letters only
- They have special meaning to the compiler

## Identifiers

- Identifiers should be
  - Short enough to be reasonable to type (single word is norm)
    - Standard abbreviations are fine (but only standard abbreviations)
  - Long enough to be understandable
    - When using multiple word identifiers capitalize the first letter of each word
- Examples
  - Min
  - Temperature
  - CameraAngle
  - CurrentNbrPoints







## Integer Division

- Integer division produces an integer result
  - Truncates the result
- Examples
  - 3 / 2 evaluates to 1
  - 4 / 6 evaluates to 0
  - 10 / 3 evaluates to 3





| <b>Operator Frecedence *</b> Examples $20 - 4 / 5 * 2 + 3 * 5 % 4$ $(4 / 5)$ $(4 / 5) * 2)$ $((4 / 5) * 2) + (3 * 5) % 4$ $(20 - ((4 / 5) * 2)) + ((3 * 5) % 4)$ $(20 - ((4 / 5) * 2)) + ((3 * 5) % 4)$ $(20 - ((4 / 5) * 2)) + ((3 * 5) % 4)$ | Onorat   | or   | D | r۵ |   | od  | ۵r | ากส | L |    |   |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|---|----|---|-----|----|-----|---|----|---|----|
| Examples $20 - 4 / 5 * 2 + 3 * 5 \% 4$ $(4 / 5)$ $((4 / 5) * 2)$ $((4 / 5) * 2)$ $((4 / 5) * 2)$ $((4 / 5) * 2)$ $((3 * 5) \% 4)$ $(20 - ((4 / 5) * 2))$ $((3 * 5) \% 4)$ $(20 - ((4 / 5) * 2))$ $((3 * 5) \% 4)$                              | operat   | .01  | I |    | U | Cu  | CI |     | - |    |   |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                           | Examples |      |   |    |   |     |    |     |   |    |   |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                           | 20       | - 4  | / | 5  | * | 2   | +  | 3   | * | 5  | % | 4  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                           |          | (4   | 1 | 5) |   |     |    |     |   |    |   |    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                           |          | ((4  | 1 | 5) | * | 2)  |    |     |   |    |   |    |
| ((4 / 5) * 2) ((3 * 5) % 4)<br>(20 - ((4 / 5) * 2)) ((3 * 5) % 4)<br>(20 - ((4 / 5) * 2)) + ((3 * 5) % 4)                                                                                                                                      |          | ((4  | 7 | 5) | * | 2)  |    | (3  | * | 5) |   |    |
| (20 - ((4 / 5) * 2)) ((3 * 5) % 4)<br>(20 - ((4 / 5) * 2)) + ((3 * 5) % 4)                                                                                                                                                                     |          | ((4  | / | 5) | * | 2)  |    | ((3 | * | 5) | % | 4) |
| (20 -((4 / 5) * 2)) + ((3 * 5) % 4)                                                                                                                                                                                                            | (20      | -((4 | / | 5) | * | 2)) |    | ((3 | * | 5) | % | 4) |
|                                                                                                                                                                                                                                                | (20      | -((4 | / | 5) | * | 2)) | +  | ((3 | * | 5) | % | 4) |
|                                                                                                                                                                                                                                                |          |      |   |    |   |     |    |     |   |    |   |    |
|                                                                                                                                                                                                                                                |          |      |   |    |   |     |    |     |   |    |   |    |
|                                                                                                                                                                                                                                                |          |      |   |    |   |     |    |     |   |    |   |    |



## Examples

```
int FahrenheitFreezing = 32;
char FinalGrade = 'A';
cout << "Slope of line: ";
float m;
cin >> m;
cout << "Intercept: ";
float b;
cin >> b;
cout << "X value of interest: ";
float x;
cin >> x;
float y = (m * x) + b;
```