
1

Modifying objects

Operators and Expressions

JPC and JWD © 2002 McGraw-Hill, Inc.

Memory Depiction

float y = 12.5;
12.5y

1001
1002
1003
1004

2

Memory Depiction

float y = 12.5;

int Temperature = 32;
12.5

32

y

Temperature

1001
1002
1003
1004
1005
1006

Memory Depiction

float y = 12.5;

int Temperature = 32;

char Letter = 'c';

12.5

32

'c'

y

Temperature

Letter

1001
1002
1003
1004
1005
1006
1007

3

Memory Depiction

float y = 12.5;

int Temperature = 32;

char Letter = 'c';

int Number;

12.5

32

'c'

y

Temperature

Letter

1001
1002
1003
1004
1005
1006
1007

-Number 1008
1009

Assignment Statement

Basic form
object = expression ;

Celsius = (Fahrenheit - 32) * 5 / 9;

y = m * x + b;

Action
Expression is evaluated
Expression value stored in object

Target becomes source

4

Definition

int NewStudents = 6; 6NewStudents

Definition

int NewStudents = 6;

int OldStudents = 21;

6

21

NewStudents

OldStudents

5

Definition

int NewStudents = 6;

int OldStudents = 21;

int TotalStudents;

6

21

NewStudents

OldStudents

-TotalStudents

Assignment Statement

int NewStudents = 6;

int OldStudents = 21;

int TotalStudents;

TotalStudents = NewStudents + OldStudents;

6

21

NewStudents

OldStudents

?TotalStudents

6

Assignment Statement

int NewStudents = 6;

int OldStudents = 21;

int TotalStudents;

TotalStudents = NewStudents + OldStudents;

6

21

NewStudents

OldStudents

27TotalStudents

Assignment Statement

int NewStudents = 6;

int OldStudents = 21;

int TotalStudents;

TotalStudents = NewStudents + OldStudents;

OldStudents = TotalStudents;

6

?

NewStudents

OldStudents

27TotalStudents

7

Assignment Statement

int NewStudents = 6;

int OldStudents = 21;

int TotalStudents;

TotalStudents = NewStudents + OldStudents;

OldStudents = TotalStudents;

6

27

NewStudents

OldStudents

27TotalStudents

Consider

int Value1 = 10; 10Value1

8

Consider

int Value1 = 10;

int Value2 = 20;

10

20

Value1

Value2

Consider

int Value1 = 10;

int Value2 = 20;

int Hold = Value1;

10

20

Value1

Value2

10Hold

9

Consider

int Value1 = 10;

int Value2 = 20;

int Hold = Value1;

Value1 = Value2;

?

20

Value1

Value2

10Hold

Consider

int Value1 = 10;

int Value2 = 20;

int Hold = Value1;

Value1 = Value2;

20

20

Value1

Value2

10Hold

10

Consider

int Value1 = 10;

int Value2 = 20;

int Hold = Value1;

Value1 = Value2;

Value2 = Hold;

20

?

Value1

Value2

10Hold

Consider

int Value1 = 10;

int Value2 = 20;

int Hold = Value1;

Value1 = Value2;

Value2 = Hold;

We swapped the values of objects Value1 and Value2 using
Hold as temporary holder for Value1’s starting value!

20

10

Value1

Value2

10Hold

11

Incrementing

int i = 1;
i 1

Incrementing

int i = 1;

i = i + 1;

Assign the value of expression i + 1 to i

Evaluates to 2

i 1

2i

12

Const Definitions

Modifier const indicates that an object cannot be changed
Object is read-only

Useful when defining objects representing physical and
mathematical constants

const float Pi = 3.1415;

Value has a name that can be used throughout the program
const int SampleSize = 100;

Makes changing the constant easy
Only need to change the definition and recompile

Assignment Conversions

Floating-point expression assigned to an integer object is
truncated

Integer expression assigned to a floating-point object is
converted to a floating-point value

Consider
float y = 2.7;
int i = 15;
int j = 10;
i = y; // i is now 2
cout << i << endl;
y = j; // y is now 10.0
cout << y << endl;

13

Nonfundamental Types

Nonfundamental as they are additions to the language

C++ permits definition of new types and classes
A class is a special kind of type

Class objects typically have
Data members that represent attributes and values
Member functions for object inspection and manipulation
Members are accessed using the selection operator (.)

j = s.size();

Auxiliary functions for other behaviors

Libraries often provide special-purpose types and classes

Programmers can also define their own types and classes

Examples

Standard Template Library (STL) provides class string

EzWindows library provides several graphical types and classes
SimpleWindow is a class for creating and manipulating

window objects
RectangleShape is a class for creating and manipulating

rectangle objects

14

Class string

Class string
Used to represent a sequence of characters as a single
object

Some definitions
string Name = "Joanne";

string DecimalPoint = ".";

string empty = "";

string copy = name;

string Question = '?'; // illegal

Nonfundamental Types

To access a library use a preprocessor directive to add its
definitions to your program file

#include <string>

The using statement makes syntax less clumsy
Without it
std::string s = "Sharp";

std::string t = "Spiffy";

With it
using namespace std; // std contains string

string s = "Sharp";

string t = "Spiffy";

15

EzWindows Library Objects

Definitions are the same form as other objects
Example

SimpleWindow W;

Most non-fundamental classes have been created so that an
object is automatically initialized to a sensible value

SimpleWindow objects have member functions to process
messages to manipulate the objects

Most important member function is Open() which causes
the object to be displayed on the screen

Example
W.Open();

Initialization

Class objects may have several attributes to initialize

Syntax for initializing an object with multiple attributes
Type Identifier(Exp1, Exp2, ..., Expn);

SimpleWindow object has several optional attributes

SimpleWindow W("Window Fun", 8, 4);

First attribute
Window banner

Second attribute
Width of window in centimeters

Third attribute
Height of window in centimeters

16

An EzWindows Program
#include <iostream>

using namespace std;

#include "ezwin.h"

int ApiMain() {

SimpleWindow W("A Window", 12, 12);

W.Open();

cout << "Enter a character to exit" << endl;

char a;

cin >> a;

return 0;

}

An EzWindows Project File

17

An EzWindows Project File

Sample Display Behavior

18

RectangleShape Objects

EzWindows also provides RectangleShape for manipulating
rectangles

RectangleShape objects can specify the following attributes

SimpleWindow object that contains the rectangle (mandatory)

Offset from left edge of the SimpleWindow

Offset from top edge of the SimpleWindow
Offsets are measured in centimeters from rectangle center

Width in centimeters

Height in centimeters

Color
color is an EzWindows type

RectangleShape Objects

Examples
SimpleWindow W1("My Window", 20, 20);

SimpleWindow W2("My Other Window", 15, 10);

RectangleShape R(W1, 4, 2, Blue, 3, 2);

RectangleShape S(W2, 5, 2, Red, 1, 1);

RectangleShape T(W1, 3, 1, Black, 4, 5);

RectangleShape U(W1, 4, 9);

19

RectangleShape Objects

Some RectangleShape member functions for processing
messages

Draw()

Causes rectangle to be displayed in its associated
window

GetWidth()

Returns width of object in centimeters

GetHeight()

Returns height of object in centimeters

SetSize()

Takes two attributes -- a width and height -- that are
used to reset dimensions of the rectangle

Another EzWindows Program
#include <iostream>
using namespace std;
#include "rect.h"
int ApiMain() {

SimpleWindow W("Rectangular Fun", 12, 12);
W.Open();
RectangleShape R(W, 5.0, 2.5, Blue, 1, 2);
R.Draw();
cout << "Enter a character to exit" << endl;
char Response;
cin >> Response;
return 0;

}

20

Sample Display Behavior

Compound Assignment

C++ has a large set of operators for applying an operation to
an object and then storing the result back into the object

Examples
int i = 3;
i += 4; // i is now 7
cout << i << endl;

float a = 3.2;
a *= 2.0; // a is now 6.4
cout << a << endl;

21

Increment and Decrement

C++ has special operators for incrementing or decrementing an
object by one
Examples
int k = 4;
++k; // k is 5

k++; // k is 6
cout << k << endl;
int i = k++; // i is 6, k is 7
cout << i << " " << k << endl;
int j = ++k; // j is 8, k is 8
cout << j << " " << k << endl;

Class string

Some string member functions

size() determines number of characters in the string
string Saying = "Rambling with Gambling";

cout << Saying.size() << endl; // 22

substr() determines a substring (Note first position has index 0)
string Word = Saying.substr(9, 4); // with

find() computes the position of a subsequence
int j = Saying.find("it"); // 10

int k = Saying.find("its"); // ?

22

Class string

Auxiliary functions and operators

getline() extracts the next input line
string Response;

cout << "Enter text: ";

getline(cin, Response, '\n');

cout << "Response is \"" << Response

<< "\"” << endl;

Example run
Enter text: Want what you do

Response is "Want what you do"

Class string

Auxiliary operators

+ string concatenation
string Part1 = "Me";

string Part2 = " and ";

string Part3 = "You";

string All = Part1 + Part2 + Part3;

+= compound concatenation assignment
string ThePlace = "Brooklyn";

ThePlace += ", NY";

23

#include <iostream>
using namespace std;
int main() {

cout << "Enter the date in American format: "
<< "(e.g., January 1, 2001) : ";

string Date;
getline(cin, Date, '\n');
int i = Date.find(" ");
string Month = Date.substr(0, i);
int k = Date.find(",");
string Day = Date.substr(i + 1, k - i - 1);
string Year = Date.substr(k + 2, Date.size() - 1);
string NewDate = Day + " " + Month + " " + Year;
cout << "Original date: " << Date << endl;
cout << "Converted date: " << NewDate << endl;
return 0;

}

