
1

Libraries

Computational assistants

JPC and JWD © 2002 McGraw-Hill, Inc.

Previous examples

Programmer-defined functions
main()

ApiMain()

Library-defined functions
cin.get()

string member functions size()
RectangleShape member function Draw()
SimpleWindow member function Open()

Advice
Don’t reinvent the wheel! There are lots of libraries out there

Functions

2

Terminology

A function is invoked by a function call / function invocation

y = f(a);

Terminology

A function call specifies
The function name

The name indicates what function is to be called

y = f(a);

A function call specifies
The function name

The name indicates what function is to be called

y = f(a);

The actual parameters to be used in the invocation
The values are the information that the called function
requires from the invoking function to do its task

y = f(a);

3

Terminology

A function call produces a return value
The return value is the value of the function call

y = f(a);

Invocation Process

Flow of control is temporarily transferred to the invoked
function

Correspondence established between actual parameters of
the invocation with the formal parameters of the definition

cout << "Enter number: ";

double a;

cin >> a;

y = f(a);

cout << y;

Value of a is given to x

double f(double x) {

double result =

x*x + 2*x + 5;

return result;

}

4

Invocation Process

Flow of control is temporarily transferred to the invoked
function

Local objects are also maintained in the invocation’s
activation record. Even main() has a record

cout << "Enter number: ";

double a;

cin >> a;

y = f(a);

cout << y;

Activation record is large
enough to store values
associated with each object
that is defined by the function

double f(double x) {

double result =

x*x + 2*x + 5;

return result;

}

Invocation Process

Flow of control is temporarily transferred to the invoked
function

Other information may also be maintained in the invocation’s
activation record

cout << "Enter number: ";

double a;

cin >> a;

y = f(a);

cout << y;

Possibly a pointer to the
current statement being
executed and a pointer to
the invoking statement

double f(double x) {

double result =

x*x + 2*x + 5;

return result;

}

5

Invocation Process

Flow of control is temporarily transferred to the invoked
function

Next statement executed is the first one in the invoked
function

cout << "Enter number: ";

double a;

cin >> a;

y = f(a);

cout << y;

double f(double x) {

double result =

x*x + 2*x + 5;

return result;

}

Invocation Process

Flow of control is temporarily transferred to the invoked
function

After function completes its action, flow of control is
returned to the invoking function and the return value is
used as value of invocation

cout << "Enter number: ";

double a;

cin >> a;

y = f(a);

cout << y;

double f(double x) {

double result =

x*x + 2*x + 5;

return result;

}

6

Execution Process

Function body of invoked function is executed

Flow of control then returns to the invocation statement

The return value of the invoked function is used as the value of
the invocation expression

Function Prototypes

Before a function can appear in an invocation its interface must
be specified

Prototype or complete definition

int Max(int a, int b)

Type of value that
the function returns

FunctionType FunctionName (ParameterList)

A description of the form the
parameters (if any) are to take

Identifier name of
function

7

Function Prototypes

Before a function can appear in an invocation its interface must
be specified

Prototypes are normally kept in library header files

int Max(int a, int b)

Type of value that
the function returns

FunctionType FunctionName (ParameterList)

A description of the form the
parameters (if any) are to take

Identifier name of
function

Libraries

Library
Collection of functions, classes, and objects grouped by
commonality of purpose
Include statement provides access to the names and
descriptions of the library components
Linker connects program to actual library definitions

Previous examples
String: STL’s string class
Graphics: EzWindows

8

Basic Translation Process

Process
preprocessor
directives to

produce a
translation

unit

Executable Unit

Source program

Check
translation

unit for legal
syntax and

compile it into
an object file

Link object file
with standard

object files
and other

object files to
produce an
executable

unit

Some Standard Libraries

fstream
File stream processing

assert
C-based library for assertion processing

iomanip
Formatted input/output (I/O) requests

ctype
C-based library for character manipulations

math
C-based library for trigonometric and logarithmic functions

Note
C++ has many other libraries

9

Library Header Files

Describes library components

Typically contains
Function prototypes

Interface description
Class definitions

Sometimes contains
Object definitions

Example: cout and cin in iostream

Library Header Files

Typically do not contain function definitions
Definitions are in source files
Access to compiled versions of source files provided by a
linker

10

#include <iostream>
#include <cmath>
using namespace std;
int main() {

cout << "Enter Quadratic coefficients: ";
double a, b, c;
cin >> a >> b >> c;
if ((a != 0) && (b*b - 4*a*c > 0)) {

double radical = sqrt(b*b - 4*a*c);
double root1 = (-b + radical) / (2*a);
double root2 = (-b - radical) / (2*a);
cout << "Roots: " << root1 << " " << root2;

}
else {

cout << "Does not have two real roots";
}
return 0;

}

Invocation

Library header files

#include <iostream>
#include <fstream> // file stream library
using namespace std;
int main() {

ifstream fin("mydata.txt");
int ValuesProcessed = 0;
float ValueSum = 0;
float Value;
while (fin >> Value) {

ValueSum += Value;
++ValuesProcessed;

}
if (ValuesProcessed > 0) {

ofstream fout("average.txt");
float Average = ValueSum / ValuesProcessed;
fout << "Average: " << Average << endl;
return 0;

}
else {

cerr << "No list to average" << endl;
return 1;

}
}

11

ifstream sin("in1.txt"); // extract from in1.txt

ofstream sout("out1.txt"); // insert to out1.txt

string s;

while (sin >> s) {

sout << s << endl;

}

sin.close(); // done with in1.txt

sout.close(); // done with out1.txt

sin.open("in2.txt"); // now extract from in2.txt

sout.open("out.txt", // now append to out2.txt

(ios_base::out | ios_base::app));

while (sin >> s) {

sout << s << endl;

}

sin.close(); // done with in2.txt

sout.close(); // done with out2.txt

