Libraries

Computational assistants

JPC and JWD © 2002 McGraw-Hill, Inc.

Functions

Previous examples

= Programmer-defined functions
¢ main ()
¢ ApiMain ()

= Library-defined functions
¢ cin.get()
+ string member functions size ()
+ RectangleShape member function Draw ()
+ SimpleWindow member function Open ()
@ Advice
= Don't reinvent the wheel! There are lots of libraries out there

Terminology

4 A function is invoked by a function call / function invocation

y = f(a);

Terminology

A function call specifies
» The function name
+ The name indicates what function is to be called

y = f(a);

= The actual parameters to be used in the invocation

+ The values are the information that the called function
requires from the invoking function to do its task

y = f(a);

Terminology

% A function call produces a return value
= The return value is the value of the function call

y = £(a);

Invocation Process

@ Flow of control is temporarily transferred to the invoked
function

» Correspondence established between actual/ parameters of
the invocation with the formal parameters of the definition

cout << "Enter number: "
double a; {double f(double x) {
cin >> a; .

: double result =
y = £(a); :
cout << y; . X*xX + 2*x + 5;

= Value of a is given to x return result;

Invocation Process

@ Flow of control is temporarily transferred to the invoked
function

= Local objects are also maintained in the invocation’s
activation record. Even main() has a record

cout << "Enter number: ";

double a; D LT SRR PP PR LT
cin >> a; : double f (double x) {
y = f(a); double result =

cout << y;

= Activation record is large
enough to store values
associated with each object
that is defined by the function

x*x + 2*x + 5;

return result;

Invocation Process

@ Flow of control is temporarily transferred to the invoked
function

= Other information may also be maintained in the invocation’s
activation record

cout << "Enter number: ";

double a; = weeeccccccccccccsssssssscsccscssns

cin >> a; ”’,,,——v

y = £(a);
cout << y;

§ double result =
= Possibly a pointer to the

x*x + 2*x + 5;

current statement being
executed and a pointer to
the invoking statement

return result;

Invocation Process

% Flow of controlis temporarily transferred to the invoked
function

= Next statement executed is the first one in the invoked
function

cout << "Enter number: ";

double a;

: double £ (double x) {
cin >> a; _ :

. double result =
y = £(a); :
cout << y; : X*xX + 2*x + 5;

E return result;

) .

Invocation Process

@ Flow of control is temporarily transferred to the invoked
function
= After function completes its action, flow of control is
returned to the invoking function and the return value is
used as value of invocation

cout << "Enter number: ";

double a; double f(double x) {

cin >> a;
double result =

y = £(a);
cout << y"k\\\\\\\ X*x + 2*x + 5;

return result;

Execution Process

Function body of invoked function is executed

@

Flow of control then returns to the invocation statement

@

@ The return value of the invoked function is used as the value of
the invocation expression

Function Prototypes

Before a function can appear in an invocation its interface must
be specified
» Prototype or complete definition

Type of value that A description of the form the
the function returns parameters (if any) are to take

Identifier name of
function

/

FunctionType FunctionName (ParameterList)

int Max(int a, int b)

Function Prototypes

% Before a function can appear in an invocation its interface must
be specified

= Prototypes are normally kept in library header files

Type of value that A description of the form the
the function returns parameters (if any) are to take

Identifier name of
function

/

FunctionType FunctionName (ParameterList)

int Max(int a, int b)

Libraries

@ Library

= Collection of functions, classes, and objects grouped by
commonality of purpose

» Include statement provides access to the names and
descriptions of the library components

= Linker connects program to actual library definitions

4 Previous examples
= String: STL's string class
= Graphics: EzWindows

Basic Translation Process

Source program

A4

Link object file
Process Check with standard
preprocessor translation object files
directives to unit for legal and other
> = .
produce a syntax and object files to
translation compile it into produce an
unit an object file executable
unit

A 4

Executable Unit

Some Standard Libraries

fstream

= File stream processing
@ assert

= C-based library for assertion processing
4 jomanip
» Formatted input/output (I/O) requests
@ ctype
» C-based library for character manipulations
math
» C-based library for trigonometric and logarithmic functions

4 Note
= C++ has many other libraries

Library Header Files

Describes library components

@

Typically contains
= Function prototypes
+ Interface description
» Class definitions

Sometimes contains
= Object definitions
+ Example: cout and cin in iostream

&

Library Header Files

Typically do not contain function definitions
» Definitions are in source files

= Access to compiled versions of source files provided by a
linker

#include <iostream>
#include <cmaths> <€ Library header files
using namespace std;
int main() {
cout << "Enter Quadratic coefficients: ";
double a, b, c;
cin >> a >> b >> c;
if ((a != 0) && (b*b - 4*a*c > 0)) {
double radical = sqrt(b*b - 4*a*c);
double rootl = (-b + radical) / (2*a);
double root2 = (-b - radical) / (2*a);
cout << "Roots: " << rootl << " " << root2;

Invocation

}

else {
cout << "Does not have two real roots";

return 0;

#include <iostream>
#include <fstream> // file stream library
using namespace std;
int main() {
ifstream fin("mydata.txt");
int ValuesProcessed = 0;
float ValueSum = 0;
float Value;
while (fin >> Value) {
ValueSum += Value;
++ValuesProcessed;
}
if (ValuesProcessed > 0) {
ofstream fout("average.txt");
float Average = ValueSum / ValuesProcessed;
fout << "Average: " << Average << endl;
return 0;

else {

cerr << "No list to average" << endl;
return 1;

ifstream sin("inl.txt"); // extract from inl.txt
ofstream sout ("outl.txt"); // insert to outl.txt
string s;
while (sin >> s) {

sout << s << endl;

}

sin.close(); // done with inl. txt
sout.close(); // done with outl.txt
sin.open("in2.txt") ; // now extract from in2.txt

sout.open ("out.txt", // now append to out2.txt
(ios _base::out | ios base::app)):;
while (sin >> s) {

sout << s << endl;

}

sin.close(); // done with in2.txt
sout.close() ; // done with out2.txt

11

