
1

Abstract Data Types

Development and Implementation

JPC and JWD © 2002 McGraw-Hill, Inc.

Our Goal

Well-defined representations that allow objects to be created 
and used in an intuitive manner

User should not have to bother with unnecessary details

Example
programming a microwave to make popcorn should not 
require a physics course



2

Golden Rule

Use information hiding and encapsulation to support integrity of
data

Put implementation details in a separate module
Implementation details complicate the class declarations

Data members are private so that use of the interface is 
required

Makes clients generally immune to implementation 
changes

Another Golden Rule

Keep it simple – class minimality rule

Implement a behavior as a nonmember function when 
possible

Only add a behavior if it is necessary



3

Abstract Data Type

Well-defined and complete data abstraction using the 
information-hiding principle

Rational Number Review

Rational number
Ratio of two integers: a/b

Numerator over the denominator

Standard operations
Addition Multiplication

Subtraction Division

bc+ad=c+a ac=c*a

a - c = ad - bc ad=c/a



4

Abstract Data Type

Consider
Rational a(1,2);    // a = 1/2

Rational b(2,3);    // b = 2/3

cout << a << " + " << b << " = " << a + b;

Rational s;         // s = 0/1

Rational t;         // t = 0/1

cin >> s >> t;
cout << s << " * " << t << " = " << s * t;

Observation
Natural look that is analogous to fundamental-type 
arithmetic objects

Rational Attributes

A numerator and denominator
Implies in part a class representation with two private  int
data members

NumeratorValue and DenominatorValue



5

Rational Public Behaviors

Rational arithmetic
Addition, subtraction, multiplication, and division

Rational relational
Equality and less than comparisons

Practice rule of class minimality

Rational Public Behaviors

Construction
Default construction

Design decision 0/1
Specific construction

Allow client to specify numerator and denominator 
Copy construction

Provided automatically

Assignment
Provided automatically

Insertion and extraction



6

Non-Public Behaviors

Inspection and mutation of data members

Clients deal with a Rational object!

Auxiliary Behaviors

Operations (necessarily public)
Arithmetic, relational, insertion, and extraction operations

Provides the natural form we expect
Class definition provides a functional form that 
auxiliary operators use

Provides commutativity consistency
For C++ reasons 1 + r and r + 1 would not be 
treated the same if addition was a member operation



7

Object a
Attributes:

NumeratorValue(1)
DenominatorValue(2)

Object b
Attributes:

NumeratorValue(2)
DenominatorValue(3)

Class Rational
Public interface: Add(), Subtract(),

Multiply(),Divide(), Equal(),
LessThan(), Insert(),Extract()
Data members: NumeratorValue,

DenominatorValue
Other members: GetNumerator(), GetDenominator(),

SetNumerator(), SetDenominator(),

Instantiation
Rational a(1,2);

Instantiation
Rational b(2,3);

Library Components

Rational.h
Class definitions and library function prototypes

Rational.cpp
Implementation source code – member and auxiliary 
function definitions

Auxiliary functions are assisting global functions that 
provide expected but non-member capabilities

Rational.obj
Translated version of Rational.cpp (linkable)

Rational.lib
Library version of Rational.obj that is more readily linkable



8

#include <iostream>

using namespace std;

#include "rational.h"

int main() {

Rational r;

Rational s;

cout << "Enter two rationals(a/b): ";

cin >> r >> s;

Rational Sum = r + s;

cout << r << " + " << s << " = " << Sum;

return 0;

}

MyProgram.cpp
Making use of the Rational
class. The header file provides
access to the class definition
and to auxiliary function
prototypes. The header file
does not provide member and
auxiliary definitions

Compiler translates the unit and produces MyProgram.obj

Compiler recognizes that MyProgram.obj does not contain actual 
definitions of Rational constructor, +, >>, and <<

Linker is used to combine definitions from the Rational library 
file with MyProgram.obj to produce MyProgram.exe

Compiler must be told where to find the Rational library file

Producing MyProgram.exe

Preprocessor combines the definitions and prototypes in
iostream and rational headers along with MyProgram.cpp to 
produce a compilation unit

Compiler must be told where to look for Rational.h



9

Producing MyProgram.exe

Process
preprocessor
directives to
produce a
translation

unit

MyProgram.exe

MyProgram.cpp

Check
translation unit
for legal syntax
and compile it
into object file

MyProgram.obj

Link object file
with standard

library files
and rational
library file to

produce
executable

unit

Rational Header File Overview
File layout

Class definition and library prototypes nested within 
preprocessor statements

Ensures one inclusion per translation unit
Class definition precedes library prototypes

#ifndef RATIONAL_H
#define RATIONAL_H

class Rational {

// …
} ;

// library prototypes …
#endif



10

Class Rational Overview

class Rational {      // from rational.h

public:

// for everybody including clients

protected:

// for Rational member functions and for

// member functions from classes derived

// from rational

private:

// for Rational member functions

} ;

Rational Public Section

public:

// default constructor

Rational();

// specific constructor

Rational(int numer, int denom = 1);

// arithmetic facilitators

Rational Add(const Rational &r) const;

Rational Multiply(const Rational &r) const;

// stream facilitators

void Insert(ostream &sout) const;

void Extract(istream &sin);



11

Rational Protected Section

protected:

// inspectors

int GetNumerator() const;

int GetDenominator() const;

// mutators

void SetNumerator(int numer);

void SetDenominator(int denom);

Rational Private Section

private:

// data members

int NumeratorValue;

int DenominatorValue;



12

// after the class definition in rational.h

Rational operator+(

const Rational &r, const Rational &s);

Rational operator*(

const Rational &r, const Rational &s);

ostream& operator<<(

ostream &sout, const Rational &s);

istream& operator>>(istream &sin, Rational &r);

Auxiliary Operator Prototypes 

Auxiliary Operator Importance

Rational r;

Rational s;

r.Extract(cin);

s.Extract(cin);

Rational t = r.Add(s);

t.Insert(cout);

Rational r;

Rational s;

cin >> r;

cin >> s;

Rational t = r + s;

cout << t;

Natural look

Should << be a member?
Consider
r << cout;



13

Const Power

const Rational OneHalf(1,2);

cout << OneHalf;              // legal

cin >> OneHalf;               // illegal

Rational Implementation

#include <iostream>     // Start of rational.cpp

#include <string>

using namespace std;

#include "rational.h"

// default constructor

Rational::Rational() {         

SetNumerator(0);

SetDenominator(1);

}

Example
Rational r;       // r = 0/1

Which objects are
being referenced?

Is this necessary?



14

Remember

Every class object
Has its own data members

Has its own member functions
When a member function accesses a data member

By default the function accesses the data member of 
the object to which it belongs!

No special notation needed

Remember

Auxiliary functions
Are not class members

To access a public member of an object, an auxiliary 
function must use the dot operator on the desired object

object.member



15

Specific Constructor

// (numer, denom) constructor

Rational::Rational(int numer, int denom) {

SetNumerator(numer); 

SetDenominator(denom);

}

Example
Rational t(2,3);   // t = 2/3

Rational u(2);     // u = 2/1 (why?)

Inspectors

int Rational::GetNumerator() const {

return NumeratorValue;

}

int Rational::GetDenominator() const {

return DenominatorValue;

}

Where are the following legal?
int a = GetNumerator();

int b = t.GetNumerator();

Which object is
being referenced?

Why the const?



16

Numerator Mutator

void Rational::SetNumerator(int numer) {

NumeratorValue = numer;

}

Where are the following legal?

SetNumerator(1);

t.SetNumerator(2);

Why no const?

Denominator Mutator

void Rational::SetDenominator(int denom) {

if (denom != 0) {

DenominatorValue = denom;

}

else {

cerr << "Illegal denominator: " << denom

<< "using 1" << endl;
DenominatorValue = 1;

}

}

Example
SetDenominator(5);



17

Addition Facilitator

Rational Rational::Add(const Rational &r) const {

int a = GetNumerator();

int b = GetDenominator();

int c = r.GetNumerator();

int d = r.GetDenominator();

return Rational(a*d + b*c, b*d);

}

Example
cout << t.Add(u);

Multiplication Facilitator

Rational Rational::Multiply(const Rational &r) 

const {

int a = GetNumerator();

int b = GetDenominator();

int c = r.GetNumerator();

int d = r.GetDenominator();

return Rational(a*c, b*d);

}

Example
t.Multiply(u);



18

Insertion Facilitator

void Rational::Insert(ostream &sout) const {

sout << GetNumerator() << '/' << GetDenominator();

return;

}

Example
t.Insert(cout);

Why is sout a reference parameter?

Basic Extraction Facilitator
void Rational::Extract(istream &sin) {

int numer;

int denom;

char slash;

sin >> numer >> slash >> denom;

assert(slash == '/');

SetNumerator(numer);

SetDenominator(denom);

return;

}

Example
t.Extract(cin);



19

Auxiliary Arithmetic Operators

Rational operator+(

const Rational &r, const Rational &s) {

return r.Add(s);

}

Rational operator*(

const Rational &r, const Rational &s) {

return r.Multiply(s);

}

Example
cout << (t + t) * t;

Auxiliary Insertion Operator

ostream& operator<<(

ostream &sout, const Rational &r) {

r.Insert(sout);

return sout;

}

Why a reference return? 

Note we can do either

t.Insert(cout); cout << endl; // unnatural

cout << t << endl; // natural



20

Auxiliary Extraction Operator

// extracting a Rational

istream& operator>>(istream &sin, Rational &r) {

r.Extract(sin);

return sin;

}

Why a reference return? 

We can do either

t.Extract(cin);         // unnatural

cin >> t; // natural

What’s Happening Here?

Suppose the following definitions are in effect
Rational a(2,3);

Rational b(3,4);

Rational c(1,2);

Why do the following statements work
Rational s(a);

Rational t = b;

c = a

C++ has automatically provided us a copy constructor and an 
assignment operator



21

Copy Construction

Default copy construction
Copy of one object to another in a bit-wise manner

The representation of the source is copied to the target 
in a bit-by-bit manner

This type of copy is called shallow copying

Class developers are free to implement their own copy 
constructor

Rational does need a special one, but we will define one for the
experience

A Rational Copy Constructor

Rational::Rational(const Rational &r) {

int a = r.GetNumerator();

int b = r.GetDenomiator();

SetNumerator(a);

SetDenominator(b);

}

Rational s(a);

Rational t = b;



22

Gang Of Three

If it is appropriate to define a copy constructor then
Consider also defining

Assignment operator
Copy source to target and return target

A = B = C
Destructor

Clean up the object when it goes out of scope

We give the name Gang of three to the
Copy constructor, assignment operator, and the destructor

A Rational Assignment Operator

Rational& Rational::operator =(const Rational &r) {

int a = r.GetNumerator();

int b = r.GetDenomiator();

SetNumerator(a);

SetDenominator(b);

return *this; 

}

a = b;

a = b = c;

*this is C++ syntax for the 
object whose member 
function was invoked



23

Rational Destructor

Rational::~Rational() {

// nothing to do

}


