
Pointers and Dynamic Objects

Mechanisms for developing 
flexible list representations

JPC and JWD © 2002 McGraw-Hill, Inc.

Usefulness

Mechanism in C++ to pass command-line parameters to a 
program

This feature is less important now with the use of graphical 
interfaces

Mechanism in C++ to pass command-line parameters to a 
program

This feature is less important now with the use of graphical 
interfaces

Necessary for dynamic objects
Objects whose memory is acquired during program 
execution as the result of a specific program request

Dynamic objects can survive the execution of the 
function in which they are acquired

Dynamic objects enable variable-sized lists



Categorizing Expressions

Lvalue expressions
Represent objects that can be evaluated and modified

Rvalue expressions
Represent objects that can only be evaluated

Consider
int a;

vector<int> b(3);

int c[3];

a = 1;              // a: lvalue

c[0] = 2*a + b[0];  // c[0], a, b[0]: lvalues

Observation
Not all lvalues are the names of objects

Basics

Pointer
Object whose value represents the location of another 
object

In C++  there are pointer types for each type of object

Pointers to int objects

Pointers to char objects

Pointers to RectangleShape objects

Even pointers to pointers

Pointers to pointers to int objects



Examples of uninitialized pointers

int *iPtr;       // iPtr is a pointer to an int

char *s;         // s is a pointer to a char

Rational *rPtr;  // rPtr is a pointer to a

// Rational

Examples of initialized pointers
int i = 1;

char c = 'y';

int *ptr = &i;   // ptr is a pointer to int i

char *t = &c;    // t is a pointer to a char c

Indicates pointer object

Indicates to take the address of the object

Syntax

Examples of uninitialized pointers

int *iPtr;       // iPtr is a pointer to an int

char *s;         // s is a pointer to a char

Rational *rPtr;  // rPtr is a pointer to a

// Rational

Indicates pointer object

Memory Depiction

int i = 1;

char c = 'y';

int *ptr = &i;

char *t = &c



Indirection Operator

An asterisk has two uses with regard to pointers

In a definition, it indicates that the object is a pointer

char *s; // s is of type pointer to char

In expressions, when applied to a pointer it evaluates to the 
object to which the pointer points

int i = 1;

int *ptr = &i;        // ptr points to i

*ptr = 2;

cout << i << endl;    // display a 2

* indicates indirection or dereferencing

*ptr is an lvalue

Address Operator

& use is not limited to definition initialization

int i = 1;

int j = 2;

int *ptr;

ptr = &i;     // ptr points to location of i

*ptr = 3;     // contents of i are updated

ptr = &j;     // ptr points to location of j

*ptr = 4;     // contents of j are updated

cout << i << " " << j << endl;



Null Address

0 is a pointer constant that represents the empty or null address

Its value indicates that pointer is not pointing to a valid 
object

Cannot dereference a pointer whose value is null

int *ptr = 0;

cout << *ptr << endl; // invalid, ptr

// does not point to

// a valid int

Member Indirection

Consider

Rational r(4,3);

Rational rPtr = &r;

To select a member of r using rPtr and member selection, operator 
precedence requires

(*rPtr).Insert(cout);

Invokes member Insert() of  the 
object to which rPtr points (r)

Consider

Rational r(4,3);

Rational rPtr = &r;

To select a member of r using rPtr and member selection, operator 
precedence requires

(*rPtr).Insert(cout);

This syntax is clumsy, so C++ provides the indirect member 
selector operator ->

rPtr->Insert(cout);

Invokes member Insert() of  the 
object to which rPtr points (r)

Invokes member Insert() of the 
object to which rPtr points (r)



Traditional Pointer Usage

void IndirectSwap(char *Ptr1, char *Ptr2) {

char c = *Ptr1;

*Ptr1 = *Ptr2;

*Ptr2 = c;

}

int main() {

char a = 'y';
char b = 'n';

IndirectSwap(&a, &b);

cout << a << b << endl;

return 0;

}

In C, there are no reference 
parameters. Pointers are used to 
simulate them.

Constants and Pointers

A constant pointer is a pointer such that we cannot change the 
location to which the pointer points

char c = 'c';

const char d = 'd';

char * const ptr1 = &c;

ptr1 = &d; // illegal

A constant pointer is a pointer such that we cannot change the 
location to which the pointer points

char c = 'c';

const char d = 'd';

char * const ptr1 = &c;

ptr1 = &d; // illegal

A pointer to a constant value is a pointer object such that the 
value at the location to which the pointer points is considered 
constant

const char *ptr2 = &d;

*ptr2 = 'e'; // illegal: cannot change d

// through indirection with ptr2



Local objects and 
parameters

Object memory is 
acquired automatically

Object memory is 
returned automatically 
when object goes out of 
scope

Dynamic objects

Object memory is 
acquired by program with 
an allocation request

new operation
Dynamic objects can 
exist beyond the function 
in which they were 
allocated
Object memory is 
returned by a 
deallocation request

delete operation

Local objects and 
parameters

Object memory is 
acquired automatically

Dynamic objects

Object memory is 
acquired by program with 
an allocation request

new operation

Differences

Local objects and 
parameters

Dynamic object

Operation specifies
The type and number of objects

If there is sufficient memory to satisfy the request
A pointer to sufficient memory is returned by the operation

If there is insufficient memory to satisfy the request
An exception is generated

An exception is an error state/condition which if not 
handled (corrected) causes the program to terminate

General New Operation Behavior

Memory for dynamic objects
Requested from the free store

Free store is memory controlled by operating system



The Basic New Form

Syntax
Ptr = new SomeType ;

Where
Ptr is a pointer of type SomeType

Beware
The newly acquired memory is uninitialized unless there is a 
default SomeType constructor 

Examples

int *iptr = new int;

Rational *rptr = new Rational;

—iptr

Uninitialized int object

0/1rptr

Rational object with default
initialization



Another Basic New Form

Syntax

SomeType *Ptr = new SomeType(ParameterList);

Where

Ptr is a pointer of type SomeType

Initialization

The newly acquired memory is initialized using a SomeType 
constructor

ParameterList provides the parameters to the constructor 

Examples

int *iptr = new int(10);

Rational *rptr = new Rational(1,2);

10iptr

1/2rptr



The Primary New Form

Syntax

P = new SomeType [Expression] ;

Where
P is a pointer of type SomeType
Expression is the number of contiguous objects of type 
SomeType to be constructed -- we are making a list

Note
The newly acquired list is initialized if there is a default 
SomeType constructor

Because of flexible pointer syntax
P can be considered to be an array

Examples

int *A = new int [3];

Rational *R = new Rational[2];

A[1] = 5;

Rational r(2/3);

R[0] = r;

—A

2/3R

5

0/1

—



Right Array For The Job

cout << "Enter list size: ";

int n;

cin >> n;

int *A = new int[n];

GetList(A, n);

SelectionSort(A, n);

DisplayList(A, n);

Note

Use of the container classes of the STL is preferred from a 
software engineering viewpoint

Example vector class

Delete Operators

Forms of request

delete P;    // used if storage came from new

delete [] P; // used if storage came from new[]

Storage pointed to by P is returned to free store 

P is now undefined



Cleaning Up

int n;

cout << "Enter list size: ";

cin >> n;

int *A = new int[n];

GetList(A, n);

SelectionSort(A, n);

DisplayList(A, n);

delete [] A;

Dangling Pointer Pitfall

int *A = new int[5];

for (int i = 0; i < 5; ++i) A[i] = i;

int *B = A;

delete [] A;

A

B
0 1 2 3 4

A

B

Locations do not belong to program

—

?



Memory Leak Pitfall

int *A = new int [5];

for (int i = 0; i < 5; ++i) A[i] = i;

A = new int [5];

A 0 1 2 3 4

— — — — —

These locations cannot be
accessed by program

A 0 1 2 3 4

A Simple Dynamic List Type

What we want

An integer list data type IntList with the basic features of the
vector data type from the Standard Template Library

Features and abilities

True object
Can be passed by value and reference
Can be assigned and copied

Inspect and mutate individual elements
Inspect list size
Resize list
Insert and extract a list



Sample IntList Usage

IntList A(5, 1);

IntList B(10, 2);

IntList C(5, 4);

for (int i = 0, i < A.size(); ++i) {

A[i] = C[i];

}

cout << A << endl; // [ 4 4 4 4 4 ]

A = B;

A[1] = 5;

cout << A << endl; // [ 5 2 2 2 2 2 2 2 2 2 ]

IntList Definition

class IntList {

public:

// constructors

IntList(int n = 10, int val = 0);

IntList(const int A[], int n);

IntList(const IntList &A);

// destructor

~IntList();

// inspector for size of the list

int size() const;

// assignment operator

IntList & operator=(const IntList &A);



IntList Definition (continued)

public:

// inspector for element of constant list

const int& operator[](int i) const;

// inspector/mutator for element of

// nonconstant list

int& operator[](int i);

// resize list

void resize(int n = 0, int val = 0);

// convenience for adding new last element

void push_back(int val);

IntList Definition (continued)

private:

// data members

int *Values;      // pointer to elements

int NumberValues; // size of list

};

// IntList auxiliary operators -- nonmembers

ostream& operator<<(ostream &sout, const IntList &A);

istream& operator>>(istream &sin, IntList &A);



Default Constructor

IntList::IntList(int n, int val) {

assert(n > 0);

NumberValues = n;

Values = new int [n];

assert(Values);

for (int i = 0; i < n; ++i) {

Values[i] = val;

}

}

Gang of Three Rule

If a class has a data member that points to dynamic memory 
then that class normally needs a class-defined

Copy constructor
Constructor that builds an object out of an object of the 
same type

Member assignment operator
Resets an object using another object of the same type 
as a basis

Destructor
Anti-constructor that typically uses delete the operator 
on the data members that point to dynamic memory



Why A Tailored Copy Constructor

Suppose we use the default copy constructor
IntList A(3, 1);

IntList B(A);

And then
A[2] = 2;

Then
B[2] is changed!
Not what a client would expect

Implication
Must use tailored copy constructor

A

B

1 2 1

3

3

Tailored Copy Constructor

IntList::IntList(const IntList &A) {

NumberValues = A.size();

Values = new int [size()];

assert(Values);

for (int i = 0; i < size(); ++i)

Values[i] = A[i];

}

What kind of subscripting is being 
performed?



Gang Of Three

What happens when an IntList goes out of scope?
If there is nothing planned, then we would have a memory 
leak

Need to have the dynamic memory automatically deleted
Define a destructor

A class object going out of scope automatically has its 
destructor invoked

IntList::~IntList() {

delete [] Values;

}

Notice the tilde 

First Assignment Attempt

Algorithm

Return existing dynamic memory

Acquire sufficient new dynamic memory

Copy the size and the elements of the source object to the 
target element



Initial Implementation (Wrong)

IntList& operator=(const IntList &A) {

NumberValues = A.size();

delete [] Values;

Values = new int [NumberValues ];

assert(Values);

for (int i = 0; i < A.size(); ++i)

Values[i] = A[i];

return A;

}

Consider what happens with the code segment
IntList C(5,1);

C = C;

This Pointer

Consider
this

Inside a member function or member operator this is a pointer 
to the invoking object

IntList::size() {

return NumberValues;

}

or equivalently

IntList::size() {

return this->NumberValues;

}



Member Assignment Operator

IntList& IntList::operator=(const IntList &A) {

if (this != &A) {

delete [] Values;

NumberValues = A.size();

Values = new int [A.size()];

assert(Values);

for (int i = 0; i < A.size(); ++i) {
Values[i] = A[i];

}

}

return *this;

}
Notice the different uses of 

the subscript operator

Why the asterisk?

Accessing List Elements

// Compute an rvalue (access constant element)

const int& IntList::operator[](int i) const {

assert((i >= 0) && (i < size()));

return Values[i];

}

// Compute an lvalue

int& IntList::operator[](int i) {

assert((i >= 0) && (i < size()));

return Values[i];

}



Stream Operators

Should they be members?

class IntList {

// ...

ostream& operator<<(ostream &sout);

// ...

};

Answer is based on the form we want the operation to take

IntList A(5,1);

A << cout;  // member form (unnatural)

cout << A;  // nonmember form (natural)

Beware of Friends

If a class needs to
Can provide complete access rights to a nonmember 
function, operator, or even another class

Called a friend

Declaration example

class IntList {

// ...

friend ostream& operator<< (

ostream &sout, const IntList &A);

// ...

};



Implementing Friend <<

ostream& operator<<(ostream &sout,

const IntList &A){

sout << "[ ";

for (int i = 0; i < A.NumberValues; ++i) {

sout << A.Values[i] << " ";

}

sout << "]";

return sout;

}

Is there any need for 
this friendship?

Proper << Implementation

ostream& operator<<(ostream &sout,

const IntList &A){

sout << "[ ";

for (int i = 0; i < A.size(); ++i) {

sout << A[i] << " ";

}

sout << "]";

return sout;

}


