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ABSTRACT

On August ��� ����� we completed the factorization of the ����bit ����digit number RSA���� with the

help of the Number Field Sieve factoring method �NFS�	 This is a new record for factoring general numbers	

Moreover� ����bit RSA keys are frequently used for the protection of electronic commerce
at least outside

the USA
so this factorization represents a breakthrough in research on RSA�based systems	

The previous record� factoring the ����digit number RSA����� was established on February �� ����� also

with the help of NFS� by a subset of the team which factored RSA����	 The amount of computing time spent

on RSA���� was about ��� MIPS years� roughly four times that needed for RSA����� this is about half of

what could be expected from a straightforward extrapolation of the computing time spent on factoring RSA�

��� and about a quarter of what would be expected from a straightforward extrapolation of the computing

time spent on RSA����	 The speed�up is due to a new polynomial selection method for NFS of Murphy and

Montgomery which was applied for the �rst time to RSA���� and now� with improvements� to RSA����	

���� Mathematics Subject Classi�cation� Primary ��Y��	 Secondary ��A��	

���� ACM Computing Classi�cation System� F	�	�	

Keywords and Phrases� public�key cryptosystems� RSA� factoring� number �eld sieve	

Note� The research of Cavallar� Lioen� Montgomery� and Te Riele was carried out under project MAS�	�

�Computational number theory and data security�	

A slightly abridged version of this report will appear in the Proceedings of Eurocrypt ����� Bruges �Brugge��

Belgium� May ����� ����	 URL� http���www�esat�kuleuven�ac�be�cosic�eurocrypt����� 	



�� Introduction �

�� Introduction

After the birth� in ����� of the public�key cryptosystem RSA ���	� knowledge of the state�

of�the�art of factoring large numbers has become crucial for RSA
based cryptographic ap�
plications� Since then� major algorithmic progress was marked by the publication of the
Quadratic Sieve ���	 in ���� the Elliptic Curve algorithm ���	 in ���� and the Number
Field Sieve in ���� ���	� The largest factored �di�cult� numbers were registered carefully�
and reports of new records were invariably presented at cryptographic conferences� We men�
tion Eurocrypt �� �C���� ���	�� Eurocrypt ��� �C��� and C��� ���	�� Crypto ��� �C���� ���	��
Asiacrypt ��� �C���� ��	�� Asiacrypt ��� �C���� ���	�� and Asiacrypt ��� �C���� �	�� The C���
and C��� were factored with help of the Number Field Sieve �NFS�� the other numbers were
factored using the Quadratic Sieve �QS�� For additional information� implementations and
previous large NFS factorizations� see ���� ��� ��� ��� ��	�
This paper reports on the factorization of RSA
��� by NFS and the implications for RSA�

The number RSA
��� was taken from the RSA Challenge list ���	 as a representative ���
bit
RSA modulus� Section � discusses the implications of this project for the practical use of
RSA
based cryptosystems� Section � has the details of our computations which resulted in
the factorization of RSA
����

�� Implications for the practice of RSA

RSA is widely used today ��	� The best size for an RSA key depends on the security needs
of the user and on how long his�her information needs to be protected�
The amount of CPU time spent to factor RSA
��� was about ��� MIPS years� which is

about four times that used for the factorization of RSA
���� On the basis of the heuristic
complexity formula ��	 for factoring large N by NFS�

exp
�
������ � o���� �logN�����log logN����

�
� �����

one would expect an increase in the computing time by a factor of about seven�� This speed�
up has been made possible by algorithmic improvements� mainly in the polynomial generation
step ��� ��� ��	� and to a lesser extent in the �lter step of NFS ��	�
The complete project to factor RSA
��� took seven calendar months� The polynomial

generation step took about one month on several fast workstations� The most time�consuming
step� the sieving� was done on about ��� fast PCs and workstations spread over twelve �sites�
in six countries� This step took ��� calendar months� in which� summed over all these ���
computers� a total of ���� years of CPU�time was consumed� Filtering the relations and
building and reducing the matrix corresponding to these relations took one calendar month
and was carried out on an SGI Origin ���� computer� The block Lanczos step to �nd

�By �Cxxx� we denote a composite number having xxx decimal digits�
�One MIPS year is the equivalent of a computation during one full year at a sustained speed of oneMillion

Instructions Per Second�
�By �computing time� we mean the sieve time� which dominates the total amount of CPU time for NFS�

However� there is a trade�o� between polynomial search time and sieve time which indicates that a non�trivial
part of the total amount of computing time should be spent to the polynomial search time in order to minimize
the sieve time� See Subsection Polynomial Search Time vs� Sieving Time in Section 	�
� When we use ���
 for
predicting CPU times� we neglect the o�
�term� which� in fact� is proportional to 
� log�N� All logarithms
have base e�



�� Implications for the practice of RSA �

dependencies in this matrix took about ten calendar days on one CPU of a Cray C���
supercomputer� The �nal square root step took about two days calendar time on an SGI
Origin ���� computer�
Based on our experience with factoring large numbers we estimate that within three

years the algorithmic and computer technology which we used to factor RSA
��� will be
widespread� at least in the scienti�c world� so that by then ���
bit RSA keys will certainly
not be safe any more� This makes these keys useless for authentication or for the protection
of data required to be secure for a period longer than a few days�
���
bit RSA keys protect ��� of today�s E�commerce on the Internet ��	�at least outside

the USA�and are used in SSL �Secure Socket Layer� handshake protocols� Underlying this
undesirable situation are the old export restrictions imposed by the USA government on
products and applications using �strong� cryptography like RSA� However� on January ���
����� the U�S� Department of Commerce Bureau of Export Administration �BXA� issued new
encryption export regulations which allow U�S� companies to use larger than ���
bit keys in
RSA
based products ���	� As a result� one may replace ���
bit keys by ��
bit or even ����

bit keys thus creating much more favorable conditions for secure Internet communication�
In order to make an extrapolation attempt� we give a table of factoring records starting

with the landmark factorization in ���� by Morrison and Brillhart of F� � ������ with help
of the then new Continued Fraction �CF� method� This table includes the complete list of
factored RSA
numbers� although RSA
��� and RSA
��� were not absolute records at the
time they were factored� Notice that RSA
��� is still open� Some details on recent factoring
records are given in Appendix � to this paper�

Table �� Factoring records since ����
� decimals date algorithm e�ort reference

or year �MIPS years�

�� Sep ��� ���� CF F� � ��
�

� � ���� ��	
�� ��� CF ��� pp� xliv
xlv	

��
�� ���
��� QS ���� Table I on p� ��	
��
� ��� QS ���� p� ���	
�
�� ���
�� QS ���	
�
�� �� QS ���� Table � on p� ���	
��
��� ��� QS ���	
���
��� ���� QS ��� for C��� ���	

RSA
��� Apr ���� QS � ���	
RSA
��� Apr ���� QS �� ���	

RSA
��� Jun ���� QS �� ���	
RSA
��� Apr ���� QS ���� ��	
RSA
��� Apr ���� NFS ���� ���	
RSA
��� Feb ���� NFS ���� �	
RSA
��� Aug ���� NFS ��� this paper

Based on this table and on the factoring algorithms which we currently know� we anticipate
that within ten years from now ��
bit ����
digit� RSA keys will become unsafe�
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Let D be the number of decimal digits in the largest �general� number factored by a given
date� From the complexity formula for NFS ������ assuming Moore�s law �computing power
doubles every � months�� Brent ��	 expects D��� to be roughly a linear function of the
calendar year Y � From the data in Table � he derives the linear formula

Y � �����D��� � ������

According to this formula� a general ��
bit number �D����� will be factored by the year
����� and a general ����
bit number �D����� by the year ����
Directions for selecting cryptographic key sizes now and in the coming years are given in

���	�
The vulnerability of a ���
bit RSA modulus was predicted long ago� A ���� report ��� p�

�	 recommends�

For the most applications a modulus size of ���� bit for RSA should achieve a

su�cient level of security for �tactical� secrets for the next ten years	 This is
for long�term secrecy purposes
 for short�term authenticity purposes ��� bit might

su�ce in this century	

�� Factoring RSA����

We assume that the reader is familiar with NFS ���	� but for convenience we brie y describe
the method here� Let N be the number we wish to factor� known to be composite� There
are four main steps in NFS� polynomial selection� sieving� linear algebra� and square root�
The polynomial selection step selects two irreducible polynomials f��x� and f��x� with a

common rootm mod N � The polynomials have as many smooth values as practically possible
over a given factor base�
The sieve step �which is by far the most time�consuming step of NFS�� �nds pairs �a� b�

with gcd�a� b� � � such that both

bdeg�f��f��a�b� and bdeg�f��f��a�b�

are smooth over given factor bases� i�e�� factor completely over the factor bases� Such a pair
�a� b� is called a relation� The purpose of this step is to collect so many relations that several
subsets S of them can be found with the property that a product taken over S yields an
expression of the form

X� � Y � �mod N�� �����

For approximately half of these subsets� computing gcd�X � Y�N� yields a non�trivial factor
of N �if N has exactly two distinct factors��
The linear algebra step �rst �lters the relations found during sieving� with the purpose of

eliminating duplicate relations and relations containing a prime or prime ideal which does
not occur elsewhere� In addition� certain relations are merged with the purpose of eliminating
primes and prime ideals which occur exactly k times in k di�erent relations� for k � �� � � � � �
These merges result in so�called relation
sets� de�ned in Section ���� which form the columns
of a very large sparse matrix over F�� With help of an iterative block Lanczos algorithm a
few dependencies are found in this matrix� this is the most time
 and space
consuming part
of the linear algebra step�
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The square root step computes the square root of an algebraic number of the form

Y
�a�b��S

�a� b���

where � is a root of one of the polynomials f��x�� f��x�� and where for RSA
��� the numbers
a� b and the cardinality of the set S can all be expected to be many millions� All a � b��s
have smooth norms� With the mapping � �� m mod N � this leads to a congruence of the
form ������
In the next four subsections� we describe these four steps� as carried out for the factorization

of RSA
����

�	� Polynomial selection

This section has three parts� The �rst two parts are aimed at recalling the main details of
the polynomial selection procedure� and describing the particular polynomials used for the
RSA
��� factorization�
Relatively speaking� our selection for RSA
��� is approximately ��� times better than our

selection for RSA
���� We made better use of our procedure for RSA
��� than we did for
RSA
���� in short by searching longer� This poses a new question for NFS factorizations�
what is the optimal trade�o� between increased polynomial search time and the corresponding
saving in sieve time! The third part of this section gives preliminary consideration to this
question as it applies to RSA
����

The Procedure Our polynomial selection procedure is outlined in �	� Here we merely restate
the details� Recall that we generate two polynomials f� and f�� using a base�m method� The
degree d of f� is �xed in advance �for RSA
��� we take d � ��� Given a potential a�� we
choose an integer m � �N�ad�

��d� The polynomial

f��x� � adx
d � ad��x

d�� � � � �� a	 �����

descends from the base�m representation of N � initially adjusted so that jaij � m�� for
� � i � d� ��
Sieving occurs over the homogeneous polynomials F��x� y� � ydf��x�y� and F��x� y� �

x�my� The aim for polynomial selection is to choose f� and m such that the values F��a� b�
and F��a� b� are simultaneously smooth at many coprime integer pairs �a� b� in the sieving
region� That is� we seek F�� F� with good yield� Since F� is linear� we concentrate on the
choice of F��
There are two factors which in uence the yield of F�� size and root properties� so we seek F�

with a good combination of size and root properties� By size we refer to the magnitude of the
values taken by F�� By root properties we refer to the extent to which the distribution of the
roots of F� modulo small p

n� for p prime and n � �� a�ects the likelihood of F� values being
smooth� In short� if F� has many roots modulo small pn� the values taken by F� �behave�
as if they are much smaller than they actually are� That is� on average� the likelihood of
F��values being smooth is increased�
Our search is a two stage process� In the �rst stage we generate a large sample of good

polynomials �polynomials with good combinations of size and root properties�� In the second
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stage we identify without sieving� the best polynomials in the sample� We concentrate on
skewed polynomials� that is� polynomials f��x� � a�x

� � � � � � a	 whose �rst few coe�cients
�a�� a
 and a�� are small compared to m� and whose last few coe�cients �a�� a� and a	� may
be large compared to m� Usually ja�j � ja
j � � � � � ja	j� To compensate for the last few
coe�cients being large� we sieve over a skewed region� i�e�� a region that is much longer in x
than in y� We take the region to be a rectangle whose width�to�height ratio is s�
The �rst stage of the process� generating a sample of polynomials with good yield� has the

following main steps �d � ���

	 Guess leading coe�cient ad� usually with several small prime divisors �for projective
roots��

	 Determine initial m from adm
d � N � If the ad�� approximation �N � adm

d��md�� is
not close to an integer� try another ad� Otherwise use ����� to determine a starting f��

	 Try to replace the initial f� by a smaller one� This numerical optimization step replaces
f��x� by

f��x� k� � �cx� d� 
 �x� k �m�

and m by m� k� sieving over a region with skewness s� It adjusts four real parameters
c� d� k� s� rounding the optimal values �except s� to integers�

	 Make adjustments to f� which cause it to have exceptionally good root properties� with�
out destroying the qualities inherited from above� The main adjustment is to consider
integer pairs j�� j	 �with j� and j	 small compared to a� and a� respectively� for which
the polynomial

f��x� � �j�x� j	� � �x�m�

has exceptionally good root properties modulo many small pn� Such pairs j�� j	 are
identi�ed using a sieve�like procedure� For each promising �j�� j	� pair� we revise the
translation k and skewness s by repeating the numerical optimization on these values
alone�

In the second stage of the process we rate� without sieving� the yields of the polynomial
pairs F�� F� produced from the �rst stage� We use a parameter which quanti�es the e�ect of
the root properties of each polynomial� We factor this parameter into estimates of smoothness
probabilities for F� and F� across a region of skewness s�
At the conclusion of these two stages we perform short sieving experiments on the top�

ranked candidates�
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Results Four of us spent about ��� MIPS years on �nding good polynomials for RSA
����
The following pair� found by Dodson� was used to factor RSA
����

F��x� y� � �� ����� ���� x�

�� ���� ���� ���� x
y
������ ���� ���� ����� x�y�

����� ���� ����� ��� ���� x�y�

���� ����� ���� ���� ����� ����� x y


��� ���� ����� ����� ����� ���� ����� y�

F��x� y� � x� ���� ����� ���� ����� ����� ���� y

with s � �����
For the purpose of comparison� we give statistics for the above pair similar to those we gave

for the RSA
��� polynomials in �	� Denote by amax the largest jaij for i � �� � � � � d� The
un�skewed analogue� F�����x� y������ of F� has amax � ��� � ����� compared to the typical
case for RSA
��� of amax � ��� � ����� The un�skewed analogue of F� has amax � �� � �����
Hence� F� values have shrunk by approximately a factor of ���� whilst F� values have grown
by a factor of approximately ��� F� has real roots x�y near ������� ������ ���� ����� and
�������
With respect to the root properties of F� we have a� � �
 � �� � � � ��� � �� � �� � �����

Also� F��x� y� has �� roots x�y modulo the six primes from � to �� and an additional ��
roots modulo the � primes from �� to ��� As a result of its root properties� F��values have
smoothness probabilities similar to those of random integers which are smaller by a factor of
about ���

Polynomial Search Time vs	 Sieving Time The yield of the pair of polynomials that we
used for RSA
��� is approximately ���� times that of a skewed pair of average yield for
RSA
��� �about half of which comes from root properties and the other half from size��
The corresponding �gure for the RSA
��� pair is approximately  �about a factor of four of
which was due to root properties and the remaining factor of � to size�� From this we deduce
that� relatively speaking� our RSA
��� selection is approximately ��� times �better� than
our RSA
��� selection�
Note that this is consistent with the observed di�erences in sieve time� As noted above�

straightforward extrapolation of the asymptotic NFS run�time estimate ����� suggests that
sieving for RSA
��� should have taken approximately � times the e�ort of RSA
���� The
actual �gure is approximately �� The di�erence can be approximately reconciled by the fact
that the RSA
��� polynomial pair is� relatively� about ��� times �better� than the RSA
���
pair�
Another relevant comparison is to the RSA
��� factorization� RSA
��� of course was

factorized without our improved polynomial selection methods� The polynomial pair used
for RSA
��� has a yield approximately ��� times that of a random �un�skewed� selection or
RSA
���� Extrapolation of the NFS asymptotic run�time estimate suggests that RSA
���
should have taken about � times the e�ort of RSA
���� whereas the accepted di�erence is a
factor of �� The di�erence is close to being reconciled by the RSA
��� polynomial selection
being approximately ��� times better than the RSA
��� selection� Finally� to characterize
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the overall improvement accounted for by our techniques� we note that the RSA
��� selection
is approximately ��� times better �relatively� than the RSA
��� selection�
Since the root properties of the non�linear polynomials for RSA
��� and RSA
��� are

similar� most of the di�erence between them comes about because the RSA
��� selection
is relatively �smaller� than the RSA
��� selection� This in turns comes about because we
conducted a longer search for RSA
��� than we did for the RSA
��� search� so it was more
likely that we would �nd good size and good root properties coinciding in the same polyno�
mials� In fact� we spent approximately ��� MIPS years on the RSA
��� search� compared to
�� MIPS years for RSA
����
Continuing to search for polynomials is worthwhile only as long as the saving in sieve

time exceeds the extra cost of the polynomial search� We have analyzed the �goodness�
distribution of all polynomials generated during the RSA
��� search� Modulo some crude
approximations� the results appear in Table �� The table shows the expected bene�t obtained
from � times the polynomial search e�ort we actually invested ���� MY�� for some useful
�� The second column gives the change in search time corresponding to the ��altered search
e�ort� The third column gives the expected change in sieve time� calculated from the change
in yield according to our �goodness� distribution� Hence� whilst the absolute bene�t may

Table �� E�ect of varying the polynomial search time on the sieve time
� change in search change in sieve

time �in MY� time �in MY�

��� �� ����
��� ��� ����
� � �
� ���� ����
� ���� ����
�� ���� ���

not have been great� it would probably have been worthwhile investing up to about twice
the e�ort than we did for the RSA
��� polynomial search� We conclude that� in the absence
of further improvements� it is worthwhile using our method to �nd polynomials whose yields
are approximately ��
�� times better than a random selection�

�	� Sieving

Two sieving methods were used simultaneously� lattice sieving and line sieving� This is
probably more e�cient than using a single sieve� despite the large percentage of duplicates
found �about ���� see Section ����� both sievers deteriorate as the special q� resp� y �see
below� increase� so we exploited the most fertile parts of both� In addition� using two sievers
o�ers more  exibility in terms of memory� lattice sieving is possible on smaller machines" the
line siever needs more memory� but discovers each relation only once�
The lattice siever �xes a prime q� called the special q� which divides F��x	� y	� for some

known nonzero pair �x	� y	�� and �nds �x� y� pairs for which both F��x� y��q and F��x� y� are
smooth� This is carried out for many special q�s� Lattice sieving was introduced by Pollard
���	 and the code we used is the implementation written by Arjen Lenstra and described in
���� ��	� with some additions to handle skewed sieving regions e�ciently�
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The line siever �xes a value of y �from y � �� �� � � � up to some bound� and �nds values
of x in a given interval for which both F��x� y� and F��x� y� are smooth� The line siever
code was written by Peter Montgomery� with help from Arjen Lenstra� Russell Ruby� Marije
Elkenbracht�Huizing and Stefania Cavallar�
For the lattice sieving� both the rational and the algebraic factor base bounds were chosen

to be ��
 � �� ��� ���� The number of primes was about one million in each factor base�
Two large primes were allowed on each side in addition to the special q input� The reason
that we used these factor base bounds is that we used the lattice sieving implementation from
���	 which does not allow larger factor base bounds� That implementation was written for
the factorization of RSA
��� and was never intended to be used for larger numbers such as
RSA
���� let alone RSA
���� We expect that a rewrite of the lattice siever that would allow
larger factor base bounds would give a much better lattice sieving performance for RSA
����
Most of the line sieving was carried out with two large primes on both the rational and

the algebraic side� The rational factor base consisted of � ��� �� primes � �� ��� ��� and
the algebraic factor base consisted of � ��� ��� prime ideals of norm � ��� ��� ��� �including
the seven primes which divide the leading coe�cient of F��x� y��� Some line sieving allowed
three large primes instead of two on the algebraic side� In that case the rational factor base
consisted of ��� ��� primes �  ��� ��� and the algebraic factor base of � ��� �� prime ideals
of norm � �� ��� ��� �including the seven primes which divide the leading coe�cient of
F��x� y���
For both sievers the large prime bound � ��� ��� ��� was used both for the rational and

for the algebraic primes�
The lattice siever was run for most special q�s in the interval ���
� ������� 	� Each special q

has at least one root r such that f��r� � � mod q� For example� the equation f��x� � � mod q
has �ve roots for q � �� namely x � � ��� ��� ��� �� but no roots for q � ��� The total
number of special q
root pairs �q� r� in the interval ���
� ��� � ���	 equals about ����M�
Lattice sieving ranged over a rectangle of ��� by ���� points per special q
root pair� Taking
into account that we did not sieve over points �x� y� where both x and y are even� this gives
a total of �� � ���
 sieving points� With lattice sieving a total of ���M relations were
generated at the expense of ���� years of CPU time� Averaged over all the CPUs on which
the lattice siever was run� this gives an average of � CPU seconds per relation� In order to
give an impression of the yield of the lattice siever for di�erent special q�s� Table � shows�
for some selected intervals of lengths ��� and � � ���� the number of special q
root pairs�
the number of relations found and the yield in terms of number of relations divided by the
number of special q
root pairs� The yield clearly deteriorates with increasing values of the
special q�
For the line sieving with two large primes on both sides� sieving ranged over the regions
�

jxj � � ��� ��� ���� � � y � �� ����

jxj � � �� ��� ���� �� ��� � y � ��� ����

jxj � � �� ��� ���� ��� ��� � y � ��� ����

�The somewhat weird choice of the line sieving intervals was made because more contributors chose line
sieving than originally estimated�
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Table �� Yield of the lattice siever for selected intervals �v� w	 of special q�primes
v���� w���� � special q
 � relations � relations per

root pairs special q
root pair

�� � ���� ����� ����
�� �� ����� ����� ��
�� �� ���� ������ ���

��� ��� ������ ����� ���
��� ��� ������ ������ ���
��� ��� ���� ������ ���
��� �� ������ ������ ���
��� ��� ������ ������ ���

and for the line sieving with three large primes instead of two on the algebraic side� the
sieving range was�

jxj � � �� ��� ���� ��� ��� � y � ��� ����

Not counting the points where both x and y are even� this gives a total of ���� ���
 points
sieved by the line siever� With line sieving a total of ����M relations were generated at the
expense of ��� years of CPU time� Averaged over all the CPUs on which the line siever was
run� it needed �� CPU seconds to generate one relation� In order to give an impression of
the yield of the line siever for di�erent values of y� Table � gives� for some selected sieving
regions� the number of relations per y
value� For y between � ��� and �� ���� this yield clearly
deteriorates with increasing y� but for the larger range of y between � ��� and ��� ���� this
behavior is less obvious�
Sieving was done at twelve di�erent locations where a total of ����M relations were gen�

erated� ���M by lattice sieving and ����M by line sieving� Each incoming �le was checked
at the central site for duplicates� this reduced the total number of useful incoming relations
to �����M� Of these� �M ����� were found by the lattice siever and ����M ����� by the
line siever� The breakdown of the �����M relations �in �� among the twelve di�erent sites�

is given in Table ��
Calendar time for the sieving was ��� months� Sieving was done on about ��� SGI and Sun

workstations ����
��� MHz�� on eight R����� processors ���� MHz�� on about ��� Pentium
II PCs ����
��� MHz�� and on four Digital�Compaq boxes ���� MHz�� The total amount of
CPU�time spent on sieving was ���� CPU years�
We estimate the equivalent number of MIPS years as follows� For each contributor� Table �

gives the number of million relations generated �rounded to two decimals�� the number of
CPU days ds sieved for this and the estimated average speed ss� in million instructions per
seconds �MIPS�� of the processors on which these relations were generated� In the last column
we give the corresponding number of MIPS years dsss����� For the time counting on PCs�
we notice that on PCs one usually get real times which may be higher than the CPU times�
Summarizing gives a total of ��� MIPS years ����� for lattice and ���� for line sieving��

For comparison� RSA
��� took about ���� MIPS years and RSA
��� about ���� MIPS

�Lenstra sieved at two sites� viz�� Citibank and Univ� of Sydney�
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Table �� Yield of the line siever for selected sieving regions
x
range y
range � relations

��� ��� ��� ���� � ��� ��� ���	 �� ���� � ���	 ��� ��
�� ����  ���	 �� ���
� ���� �� ���	 ��� ���
��� ���� �����	 ������
��� ���� �����	 �����
��� ���� �����	 ������
��� ���� ����	 �����
�� ���� �����	 ������

��� �� ��� ���� � ��� ��� ���	 �� ���� �� ���	 ��� ���
��� ���� �� ���	 ��� ���
��� ���� �� ���	 ��� ���
��� ���� �� ���	 ��� ���
��� ���� �� ���	 �� ���
��� ���� ��� ���	 ��� ���
���� ���� ��� ���	 �� ���
���� ���� ��� ���	 ��� �

Table �� Breakdown of sieving contributions
� number of La�ttice� Contributor

CPU days Li�ne�
sieved

���� ���� La Alec Mu�ett
���� ���� La� Li Paul Leyland
���� ��� La� Li Peter L� Montgomery� Stefania Cavallar
���� ���� La� Li Bruce Dodson
���� ��� La� Li Fran#cois Morain and G$erard Guillerm
��� ��� La� Li Jo%el Marchand
��� ��� La Arjen K� Lenstra
��� ��� Li Paul Zimmermann
��� ��� La Je� Gilchrist
���� �� La Karen Aardal
���� �� La Chris and Craig Putnam

years�
A measure of the �quality� of the sieving may be the average number of points sieved to

generate one relation� Table � gives this quantity for RSA
��� and for RSA
���� for the
lattice siever and for the line siever� This illustrates that the sieving polynomials were better
for RSA���� than for RSA
���� especially for the line sieving� In addition� the increase of
the linear factor base bound from ���M for RSA
��� to ����M for RSA
��� accounts for
some of the change in yield� For RSA
���� the factor bases were much bigger for line sieving
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Table �� � MIPS years spent on lattice �La� and line �Li� sieving
Contributor � relations � CPU days average speed � MIPS years

sieved of processors
in MIPS

Mu�ett� La �����M ���� �� ���
Leyland� La �����M ���� ��� ����
Leyland� Li ����M ��� ��� ���
CWI� La ����M ��� ��� �
CWI� Li� �LP �����M ���� ��� ���
CWI� Li� �LP ����M ��� �� ��
Dodson� La ����M ���� ��� ��
Dodson� Li ����M ��� ��� ��
Morain� La ����M ���� ��� ��
Morain� Li ����M �� ��� �
Marchand� La ����M ��� ��� ���
Marchand� Li ����M �� ��� ��
Lenstra� La ���M ��� ��� ���
Zimmermann� Li ����M ��� ��� ���
Gilchrist� La ����M ��� ��� ���
Aardal� La ���M �� ��� ��
Putnam� La ����M �� ��� ��

than for lattice sieving� This explains the increase of e�ciency of the line siever compared
with the lattice siever from RSA
��� to RSA
����

Table �� Average number of points sieved per relation
lattice siever line siever

RSA
��� ���� ��� ��� � ���

RSA
��� ���� ��� ��� � ���

�	� Filtering and nding dependencies

The �ltering of the data and the building of the matrix were carried out at CWI and took
one calendar month�

Filtering Here we describe the �lter strategy which we used for RSA
���� An essential
di�erence with the �lter strategy used for RSA
��� is that we applied k�way merges �de�ned
below� with � � k �  for RSA
���� but only �� and ��way merges for RSA
����
First� we give two de�nitions� A relation�set is one relation� or a collection of two or more

relations generated by a merge� A k�way merge �k � �� is the action of combining k relation

sets with a common prime ideal into k�� relation
sets� with the purpose of eliminating that
common prime ideal� This is done such that the weight increase is minimal by means of a
minimum spanning tree algorithm ��	�
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Among the �����M relations collected from the twelve di�erent sites� ����M duplicates were
found generated by lattice sieving� as well as ����M duplicates caused by the simultaneous
use of the lattice and the line siever�
During the �rst �lter round� only prime ideals with norm � ��M were considered� In

a later stage of the �ltering� this ��M�bound was reduced to �M� in order to improve the
possibilities for merging relations� We added ���M free relations for prime ideals of norm �
��M �cf� ���� Section �� pp� ���
���	�� From the resulting ���M relations� ����M singletons
were deleted� i�e�� those relations with a prime ideal of norm � ��M which does not occur in
any other undeleted relation�
We were left with ����M relations containing ����M di�erent prime ideals of norm � ��M�

If we assume that each prime and each prime ideal with norm � ��M occurs at least once�
then we needed to reserve at least �� � �

��	 �����
�� excess relations for the primes and the

prime ideals of norm smaller than ��M� where ��x� is the number of primes below x� The
factor � comes from the two polynomials and the correction factor ����� takes account of
the presence of free relations� where ��� is the order of the Galois group of the algebraic
polynomial� With ������ � ��� ��� the required excess is about ���M relations� whereas we
had ����M � ����M � ����M excess relations at our disposal�
In the next merging step ����M relations were removed which would have formed the

heaviest relation
sets when performing ��way merges� reducing the excess from ����M to
about �M relations� So we were still allowed to discard about ���M � ���M � ���M relations�
The remaining ����M non�free relations� having ���M prime ideals of norm � ��M were
used as input for the merge step which eliminated prime ideals occurring in up to eight
di�erent relation
sets� During this step we looked at prime ideals of norm � �M� Here� our
approach di�ers from what we did for RSA
���� where only primes occurring twice or thrice
were eliminated� Applying the new �lter strategy to RSA
��� would have resulted in a ���
smaller ����M instead of ���M columns� but only ��� heavier matrix than the one actually
used for the factorization of RSA
��� and would have saved ��� on the block Lanczos run
time� The k �k � � relations were combined into the lightest possible k � � relation
sets
and the corresponding prime ideal �row in the matrix� was �balanced� �i�e�� all entries of
the row were made ��� The overall e�ect was a reduction of the matrix size by one row and
one column while increasing the matrix weight when k � �� as described below� We did
not perform all possible merges� We limited the program to only do merges which caused a
weight increase of at most � original relations� The merges were done in ascending order of
weight increase�
Since each k�way merge causes an increase of the matrix weight of about �k � �� times

the weight of the lightest relation
set� these merges were not always executed for higher
values of k� For example� �� and �way merges were not executed if all the relation
sets
were already�combined relations� We decided to discard relation
sets which contained more
than � relations and to stop merging �and discarding� after ���K relations were discarded�
At this point we should have slightly more columns than rows and did not want to lose any
more columns� The maximum discard threshold was reached during the ��th pass through
the ���M prime ideals of norm � �M� when we allowed the maximum weight increase to

�The ��
M free relations are not counted in these ���
M relations because the free relations are generated
during each �lter run�
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be about � relations� This means that no merges with weight increase of � relations were
executed� The �lter program stopped with ���M relation sets�
For more details and experiments with RSA
��� and other numbers� see ��	�

Finding dependencies From the matrix left after the �lter step we omitted the small primes
� ��� thus reducing the weight by ���� The resulting matrix had � ��� ��� rows� � ��� ���
columns� and weight ��� ��� ��� ������ non
zeros per row�� With the help of Peter Mont�
gomery�s Cray implementation of the block Lanczos algorithm �cf� ���	� it took ��� CPU
hours and � Gbytes of central memory on the Cray C��� at the SARA Amsterdam Academic
Computer Center to �nd �� dependencies among the rows of this matrix� Calendar time for
this job was ��� days�
In order to extract from these �� dependencies some dependencies for the matrix including

the primes � ��� quadratic character checks were used as described in ��	� ��� x� x����	� and
���� last paragraph of Section �� on pp� ��
��	� This yielded a dense ��� � �� homoge�
neous system which was solved by Gaussian elimination� That system turned out to have ��
independent solutions� which represent linear combinations of the original �� dependencies�

�	� The square root step

On August ��� ����� four di�erent square root �cf� ���	� jobs were started in parallel on
four di�erent ��� MHz processors of an SGI Origin ����� each handling one dependency�
One job found the factorization after ���� CPU�hours� the other three jobs found the trivial
factorization after ���� ����� and ���� CPU�hours �di�erent CPU times are due to the use
of di�erent parameters in the four jobs��
We found that the ���
digit number

RSA
��� �
�����������	��	
��
��������

����	���
�����
��	���
�	��������
������������
���n

�����������
	����
����
����
	�	
���������������	��
���
�������	��	���	�������

can be written as the product of two ��digit primes�

p �
��
���	�
�
������	��
�	����	�������	������	��������������������	
�������������

and

q �
����������������	��
��
�

������
������
���	�	�	���
��	


�����
�������
�������

Primality of the factors was proved with the help of two di�erent primality proving codes
��� ��	� The factorizations of p� � and q � � are given by

p� � � 
 � ����

���	��� � 
��
������	����������������������������	�����		���	����		�	����	�	���

p� � � 
� � � � 	�

�	
	����
���
� � �
	��������������
���������������������������
�	��
��	
��	��
��
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�� Details of recent absolute and SNFS factoring records 
�

�� Details of recent absolute and SNFS factoring records

Table � Absolute factoring records
� digits ��� ��� ��� ���
method QS GNFS GNFS GNFS
code Gardner RSA
��� RSA
��� RSA
���

factor date Apr �� Apr ��� Feb �� Aug ���
���� ���� ���� ����

size of p� q ��� �� ��� �� ��� �� �� �

sieve time ���� ���� ���� ���
�in MIPS years�
total sieve time ! ! �� ����
�in CPU years�
calendar time ��� ��� �� ���

for sieving �in days�

matrix size ���M ���M ���M ���M
row weight �� �� �� ��

Cray CPU hours n�a� �� ��� ���

group Internet Internet CABAL CABAL

Table �� Special Number Field Sieve factoring records
� digits �����	 ��� �� �� ���
code ������ ������ ������� NEC �������

factor date Jun ��� Feb �� Sep �� Sep ��� April �
���� ���� ���� ��� ����

size of p� q ��� �� �� � ��� ��� ��� �� ��� ��

total sieve time ���a ! ��� ��� ����
�in CPU years�
calendar time � ! �� �� ��

for sieving �in days�

matrix size ��K ! ���M ���M ��M
row weight dense ! �� �� ��

Cray CPU hours �b ! �� �� ���

group Internet NFSNET CWI CWI CABAL

aMIPS years
bcarried out on a Connection Machine


