CAPTCHAS (also known as Reverse Turing Tests) and Password Security

Michael Peck January 27, 2004

Captcha uses

- "completely automated public Turing test to tell computers and humans apart"
 - *public*: Details of algorithm used to generate the tests are publicly available.
- Mostly used for spam-fighting related purposes
 - Prevent automated email account creation: Hotmail, Yahoo! Mail.
 - Make sender of email confirm he or she is a human before the message is delivered to its recipient.
- Many other uses, including:
 - prevent automated attacks on online polls
 - prevent ticket hoarding at Ticketmaster

Examples

think

from Yahoo! Mail new account signup: uses EZ-Gimpy

Gimpy (www.captcha.net): Type in any 3 of the words above. Uses an 850 word dictionary.

Gimpy has been broken:

Greg Mori and Jitendra Malik (UC Berkeley Computer Vision Group): *Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCHA*, CVPR 2003. 92% success against EZ-Gimpy, 33% against Gimpy.

Captcha Disadvantages

- Accessibility issues
 - Visually impaired people
 - Audio captchas now exist, but are they being used in practice?
 - Text-only users
 - Lynx users
 - Cell phone WAP browser users
- Usability/inconvenience issues
 - Forcing customers to answer a captcha may drive some of them to a competitor

Disadvantages

- Computers exist to make things easier for people - captchas seem to contradict this seems to be a tradeoff.
- Simson Garfinkel: (MIT Tech Review, June 2003) These tests are the devil. If widely deployed, they will waste our time and confound us—without solving their intended problems.
 - Determined attackers could outsource captcha answering to low-wage workers in third world countries.
 - Or, set up a porn site, and make visitors answer a captcha every few minutes to continue receiving access.

Password Security

- UNIX, in the past:
 - /etc/passwd
 - World readable, but passwords encrypted (one-way) with 56-bit DES (UNIX crypt())
 - Only two ways known to attack crypt: brute force attack and dictionary attack. Dictionary attacks can be quite effective.

Improvements

- /etc/shadow
 - Only readable by root
- md5 hash instead of DES

Offline attacks a thing of the past?

- Can do a dictionary attack at your leisure, offline, with a copy of the hashed passwords.
- Otherwise, need to do attack online
 - login attempts more easily detected

Defenses against online attack

- Delayed response
 - When username/password is entered, make system pause briefly before continuing.
 - Attack: Just perform login attempts in parallel.
 - If machines are sharing the same password file, this is even easier.
 - Or, traverse through all of the usernames, only using each username once. Easy to get a list of users.
- Account locking
 - After x unsuccessful login attempts, lock the account.
 - This approach asks for trouble: Yahoo! auctions example from Pinkas and Sander.

CAPTCHAs for Password Security

- Defend against automated, on-line dictionary attacks.
- Basic protocol:
 - User must correctly answer a CAPTCHA before being allowed to enter a username & password.
 - Usability and scalability problems

Improved protocol

- Store a cookie on user's computer the first time the test is answered correctly. Let the user bypass the test if the cookie is present.
- I. User enters name & password.
- 2. System verifies name/password.
- 3. If correct,
 - a. If user has correct cookie, grant access.
 - b. Otherwise, server gives user a test, grants access if answered correctly.
- 4. If incorrect,
 - With probability p, give user a test.
 - Otherwise, immediately deny access.
 - Choice is deterministic to the username/password pair.
 - Can just make p = I.

Usability & Scalability

- Can make the generated test deterministic of the username and password pair provided by the user.
 - Valid user will receive the same exact test every time (and will still only have to answer the test rarely).

Security analysis

- Attack against the CAPTCHA:
 - Defense: increase p value in protocol
 - or, increase p only for the accounts that are being targeted.
- Cookie theft:
 - Stop accepting stolen cookie once it's detected.

Password choice

- Most systems today highly regulate the passwords that users can choose.
- From UVa ITC: http://www.itc.virginia.edu/helpdesk/accounts/passwords.html
 - To protect your files, most UVa password systems only accept new passwords that conform to the following rules:
 - Must be at least 6 characters long.
 - Must not consist of all lowercase, or all uppercase characters, all digits, or all punctuation characters.
 - Must not be part of the local computer's name.
 - Must not match anything in your UNIX account information, such as your login name or an item from your "finger" data entry (full name, login shell, home directory).
 - Must not be in the system's spelling dictionary unless it has some uppercase letters other than the first character. For example, "Explain" would be rejected but "exPlain" would be accepted.
 - Must not have more than 2 characters repeated in a row thus "ABCaaa" would be rejected.
 - These rules will probably be expanded to be more stringent in the future.

Should such restrictions still be around today?

References

- The CAPTCHA Project (at Carnegie Mellon University). www.captcha.net
- Simson Garfinkel. Excuse Me, Are You Human? MIT Technology Review, June 2003.
- Greg Mori and Jitendra Malik. Recognizing Objects in Adversarial Clutter: Breaking a Visual CAPTCHA, CVPR 2003.
- M. Naor, Verification of a human in the loop, or Identification via the Turing test. 1996.
- Benny Pinkas and Tomas Sander. Securing Passwords Against Dictionary Attacks. ACM CCS, November 2002.