
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 5:
Recursing
on Lists

2CS150 Fall 2005: Lecture 5: Recursing on Lists

Menu

• Implementing cons, car, cdr

• PS1

• List Recap

• List Recursion
Everyone who submitted a registration survey should
have received an email yesterday with your PS2
partner. If you didn’t come talk to me after class.

3CS150 Fall 2005: Lecture 5: Recursing on Lists

Implementing cons, car and cdr

(define (cons a b)

(lambda (w) (if (w) a b)))

(define (car pair) (pair #t)

(define (cdr pair) (pair #f)

Scheme provides primitive implementations for cons,
car, and cdr. But, we could define them ourselves.

4CS150 Fall 2005: Lecture 5: Recursing on Lists

CS150 PS Grading Scale

�Gold Star – Excellent Work. You got everything

I wanted on this PS. (No Gold Stars on PS1)

�Green Star – Better than good work

�Blue Star – Good Work. You got most things
on this PS, but some answers could be better.

�Silver Star – Some problems. Make sure you
understand the solutions on today’s slides.

PS1 Average: ����

5CS150 Fall 2005: Lecture 5: Recursing on Lists

No upper limit
�� - Double Gold Star: exceptional work!

Better than I expected anyone would do.

���- Triple Gold Star: Better than I thought

possible (moviemosaic for PS1)

����- Quadruple Gold Star: You have

broken important new ground in CS which
should be published in a major journal!

�����- Quintuple Gold Star: You deserve to

win a Turing Award! (a fast, general way to
make the best non-repeating photomosaic on
PS1, or a proof that it is impossible)

6CS150 Fall 2005: Lecture 5: Recursing on Lists

Question 2

• Without Evaluation Rules, Question 2 was
“guesswork”

• Now you know the Evaluation Rules, you
can answer Question 2 without any
guessing!

2

7CS150 Fall 2005: Lecture 5: Recursing on Lists

2d
(100 + 100)

Evaluation Rule 3. Application.

a. Evaluate all the subexpressions

100 <primitive:+> 100

b. Apply the value of the first
subexpression to the values of all the
other subexpressions

Error: 100 is not a procedure, we

only have apply rules for procedures!

8CS150 Fall 2005: Lecture 5: Recursing on Lists

2h

(if (not "cookies") "eat" "starve")

Evaluation Rule 4-if. Evaluate Expression0. If
it evaluates to #f, the value of the if
expression is the value of Expression2.
Otherwise, the value of the if expression is
the value of Expression1.

Evaluate (not "cookies")

9CS150 Fall 2005: Lecture 5: Recursing on Lists

Evaluate (not "cookies")
Evaluation Rule 3. Application.

a. Evaluate all the subexpressions
<primitive:not> “cookies”

The quotes really matter here!
Without them what would cookies evaluate to?

b. Apply the value of the first subexpression to
the values of all the other subexpressions

(not v) evaluates to #t if v is #f, otherwise it
evaluates to #f. (SICP, p. 19)

So, (not “cookies”) evaluates to #f

10CS150 Fall 2005: Lecture 5: Recursing on Lists

Defining not

(not v) evaluates to #t if v is #f,
otherwise it evaluates to #f.

(SICP, p. 19)

(define (not v) (if v #f #t)

11CS150 Fall 2005: Lecture 5: Recursing on Lists

2h
(if (not "cookies") "eat" "starve")

Evaluation Rule 4-if. Evaluate Expression0. If
it evaluates to #f, the value of the if
expression is the value of Expression1.
Otherwise, the value of the if expression is
the value of Expression2.

Evaluate (not "cookies") => #f

So, value of if is value of Expression2

=> “starve”

12CS150 Fall 2005: Lecture 5: Recursing on Lists

DrScheme Languages
• If you didn’t set the language correctly in

DrScheme, you got different answers!

• The “Beginning Student” has different
evaluation rules

– The rules are more complex

– But, they gave more people what they
expected

3

13CS150 Fall 2005: Lecture 5: Recursing on Lists

Comparing Languages
Welcome to DrScheme, version 205.

Language: Pretty Big (includes MrEd and Advanced).

> +
#<primitive:+>

Welcome to DrScheme, version 205.
Language: Beginning Student.
> +
+: this primitive operator must be applied to arguments;
expected an open parenthesis before the primitive
operator name
> ((lambda (x) x) 200)
function call: expected a defined name or a primitive
operation name after an open parenthesis, but found
something else

14CS150 Fall 2005: Lecture 5: Recursing on Lists

(+ (abs (- (get-red color1) (get-red sample)))
(abs (- (get-blue color1) (get-blue sample)))

(abs (- (get-green color1) (get-green sample))))

(+ (abs (- (get-red color2) (get-red sample)))
(abs (- (get-blue color2) (get-blue sample)))
(abs (- (get-green color2) (get-green sample))))

(define (closer-color? sample color1 color2)

(<

))

closer-color? (Green Star version)

15CS150 Fall 2005: Lecture 5: Recursing on Lists

(+ (abs (- (get-red color2) (get-red sample)))
(abs (- (get-blue color2) (get-blue sample)))
(abs (- (get-green color2) (get-green sample))))

(define (closer-color? sample color1 color2)

(<

))

(+ (abs (- (get-red color1) (get-red sample)))
(abs (- (get-blue color1) (get-blue sample)))
(abs (- (get-green color1) (get-green sample))))

16CS150 Fall 2005: Lecture 5: Recursing on Lists

(+ (abs (- (get-red) (get-red)))

(abs (- (get-blue) (get-blue)))
(abs (- (get-green) (get-green))))

(+ (abs (- (get-red color2) (get-red sample)))
(abs (- (get-blue color2) (get-blue sample)))

(abs (- (get-green color2) (get-green sample))))

(define (closer-color? sample color1 color2)
(<

))

color1 sample
color1

color1
sample

sample

(lambda ()

17CS150 Fall 2005: Lecture 5: Recursing on Lists

(+ (abs (- (get-red) (get-red)))

(abs (- (get-blue) (get-blue)))
(abs (- (get-green) (get-green))))

(+ (abs (- (get-red color2) (get-red sample)))
(abs (- (get-blue color2) (get-blue sample)))

(abs (- (get-green color2) (get-green sample))))

(define (closer-color? sample color1 color2)
(<

))

(color-difference color1 sample)

colora colorb
colora

colora
colorb

colorb

(lambda (colora colorb)

(define color-difference

))

(color-difference color2 sample)

18CS150 Fall 2005: Lecture 5: Recursing on Lists

(define color-difference
(lambda (colora colorb)

(+(abs (- (get-red colora) (get-red colorb)))
(abs (- (get-green colora) (get-green colorb)))
(abs (- (get-blue colora) (get-blue colorb))))))

(define (closer-color? sample color1 color2)
(< (color-difference color1 sample)

(color-difference color2 sample)))

What if you want to use square instead of abs?

4

19CS150 Fall 2005: Lecture 5: Recursing on Lists

(define color-difference

(lambda (cf)
(lambda (colora colorb)

(+ (cf (- (get-red colora) (get-red colorb)))

(cf (- (get-green colora) (get-green colorb)))
(cf (- (get-blue colora) (get-blue colorb)))))))

(define (closer-color? sample color1 color2)
(< (color-difference color1 sample)

(color-difference color2 sample)))

20CS150 Fall 2005: Lecture 5: Recursing on Lists

(define color-difference
(lambda (cf)

(lambda (colora colorb)
(+ (cf (- (get-red colora) (get-red colorb))

(cf (- (get-green colora) (get-green colorb))

(cf (- (get-blue colora) (get-blue colorb))))))))

(define (closer-color? sample color1 color2)

(< ((color-difference square) color1 sample)
((color-difference square) color2 sample)))

21CS150 Fall 2005: Lecture 5: Recursing on Lists

The Patented RGB RMS Method
/* This is a variation of RGB RMS error. The final square-root has been eliminated to */

/* speed up the process. We can do this because we only care about relative error. */

/* HSV RMS error or other matching systems could be used here, as long as the goal of */

/* finding source images that are visually similar to the portion of the target image */

/* under consideration is met. */

for(i = 0; i > size; i++) {

rt = (int) ((unsigned char)rmas[i] - (unsigned

char)image->r[i]);

gt = (int) ((unsigned char)gmas[i] - (unsigned char)

image->g[i];

bt = (int) ((unsigned char)bmas[i] - (unsigned

char)image->b[i];

result += (rt*rt+gt*gt+bt*bt);

}
Your code should never look like this! Use new lines and
indenting to make it easy to understand the structure of

your code! (Note: unless you are writing a patent. Then the

goal is to make it as hard to understand as possible.)

22CS150 Fall 2005: Lecture 5: Recursing on Lists

The Patented RGB RMS Method

rt = rmas[i] - image->r[i];

gt = gmas[i] - image->g[i];

bt = bmas[i] - image->b[i];

result += (rt*rt + gt*gt + bt*bt);

Patent requirements:
1.new – must not be previously available

(ancient Babylonians made mosaics)
2.useful
3.nonobvious

4 out of 32 or you came up with this method!

(most of rest used abs instead, which works as well)

23CS150 Fall 2005: Lecture 5: Recursing on Lists

List Recap

• A list is either:

a pair where the second part is a list

or null (note: book uses nil)

• Pair primitives:

(cons a b) Construct a pair <a, b>

(car pair) First part of a pair

(cdr pair) Second part of a pair

24CS150 Fall 2005: Lecture 5: Recursing on Lists

Problem Set 2:
Programming with Data

• Representing a card

car cdr

Pair of rank (Ace) and suit (Spades)

5

25CS150 Fall 2005: Lecture 5: Recursing on Lists

Problem Set 2:
Programming with Data

• Representing a card: (cons <rank> <suit>)

• Representing a hand

(list (make-card Ace clubs)
(make-card King clubs)
(make-card Queen clubs)
(make-card Jack clubs)
(make-card 10 clubs)

26CS150 Fall 2005: Lecture 5: Recursing on Lists

Programming with Lists

• Defining length

27CS150 Fall 2005: Lecture 5: Recursing on Lists

Charge

• PS2 is longer and harder than PS1

– Start early

– Use help: staffed lab hours, office hours,
classmates

• If you do not have a PS2 partner, come up
now

