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cs302: Theory of Computation

University of Virginia

Computer Science

Lecture 16: Lecture 16: 

Universality and Universality and 

UndecidabilityUndecidability

PS4 is due now

Some people have still not 

picked up Exam 1!  After 

next week Wednesday, I will 

start charging “storage fees”

for them.
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Menu

• Simulating Turing Machines 

• Universal Turing Machines

• Undecidability
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Proof-by-Simulation 

= Proof-by-Construction

To show an A (some class of machines) is as powerful 

as a B (some class of machines) we need to show that

for any B, there is some equivalent A.  

Proof-by-construction: 

Given any b ∈ B, construct an a ∈ A that

recognizes the same language as b.

Proof-by-simulation:

Show that there is some A that can

simulate any B.

Either of these shows: 
languages that can be recognized by a B ⊆ languages that can be recognized by an A
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TM Simulations
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If there is a path from

M to Regular TM

and a path from 

Regular TM to M

then M is equivalent 

to a Regular TM
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TM Simulations

Regular TM

2-tape, 2-head TM
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3-tape, 3-head TM

2-dimensional TM

Nondeterministic TM

2-DPDA+

PS4:3
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Can a TM simulate a TM?

Can one TM simulate every TM?

Yes, obviously.
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An Any TM Simulator

Input: < Description of some TM M, w >

Output: result of running M on w

Universal

Turing

Machine

M

w

Output 

Tape

for running

TM-M

starting on  

tape w
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Manchester Illuminated Universal Turing Machine, #9 

from http://www.verostko.com/manchester/manchester.html
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Universal Turing Machines

• People have designed Universal Turing 

Machines with

– 4 symbols, 7 states (Marvin Minsky)

– 4 symbols, 5 states 

– 2 symbols,  22 states

– 18 symbols, 2 states

– 2 states, 5 symbols (Stephen Wolfram)

• November 2007: 2 state, 3 symbols
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2-state, 3-symbol Universal TM

S
e

q
u

e
n

ce
 o

f 
co

n
fi

g
u

ra
ti

o
n

s

11Lecture 16: Undecidability and Universality

Of course, simplicity is in the eye of the beholder. 

The 2,3 Turing machine described in the dense new 

40-page proof “chews up a lot of tape” to perform 

even a simple job, Smith says. Programming it to 

calculate 2 + 2, he notes, would take up more 

memory than any known computer contains. And 

image processing? “It probably wouldn't finish 

before the end of the universe,” he says.

Alex Smith, University of 

Birmingham
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Rough Sketch of Proof

System 0 (the claimed UTM)

can simulate System 1

which can simulate System 2

which can simulate System 3

which can simulate System 4

which can simulate System 5

which can simulate any 2-color

cyclic tag system

which can simulate any TM.

See http://www.wolframscience.com/prizes/tm23/TM23Proof.pdf

for the 40-page version with all the details…

None of these 

steps involve 

universal 

computation 

themselves
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Enumerating Turing Machines

• Now that we’ve decided how to describe 

Turing Machines, we can number them

• TM-5023582376 = balancing parens

• TM-57239683 = even number of 1s

• TM-3523796834721038296738259873 = Universal TM

• TM-3672349872381692309875823987609823712347823 = WindowsXP
Not the real numbers 

– they would be 

much much much

much much bigger!
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Acceptance Problem

Input: A Turing Machine M and an input w. 

Output: Yes/no indicating if M eventually enters 

qAccept on input w.

How can we state this as a language problem?
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Acceptance Language

ATM = { <M, w> | M is a TM description 

and M accepts input w }

If we can decide if a string is in ATM, then we can

solve the Acceptance Problem (as defined on the previous slide).

Is ATM Turing-recognizable?
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Turing-Recognizable

A language L is “Turing-recognizable” if there 

exists a TM M such that for all strings w:

– If w ∈ L eventually M enters qaccept

– If w ∉ L either M enters qreject

or M never terminates

… if there exists a TM M such that for all strings w:

– If w ∈ L eventually M enters qaccept or M never terminates

– If w ∉ L either M enters qreject or M never terminates

In a previous lecture, I incorrectly defined it as:

Why can’t this be the right definition?
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Recognizing ATM

Run a UTM on <M, w> to simulate running M

on w.  If the UTM accepts, <M, w> is in ATM.

Universal

Turing

Machine

M

w

Output 

Tape

for running

TM-M

starting on  

tape w
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Recognizability of ATM

Decidable

Recognizable

ATM

Is it inside the Decidable circle?
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Undecidability of ATM

• Proof-by-contradiction.  We will show how to 

construct a TM for which it is impossible to 

decide ATM.

Define D (<M>) = Construct a TM that:

Outputs the opposite of the result of simulating 

H on input <M, <M>>

Assume there exists some TM H that decides ATM.

If M accepts its own description <M>, D(<M>) rejects.

If M rejects its own description <M>, D(<M>) accepts.
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Reaching a Contradiction

What happens if we run D on its own description, <D>?

Define D (<M>) = Construct a TM that:

Outputs the opposite of the result of simulating 

H on input <M, <M>>

Assume there exists some TM H that decides ATM.

If M accepts its own description <M>, D(<M>) rejects.

If M rejects its own description <M>, D(<M>) accepts.

If D accepts its own description <D>, D(<D>) rejects.

If D rejects its own description <D>, D(<D>) accepts.
substituting 

D for M…

21Lecture 16: Undecidability and Universality

Reaching a Contradiction

Define D (<M>) = Construct a TM that:

Outputs the opposite of the result of simulating 

H on input <M, <M>>

Assume there exists some TM H that decides ATM.

If D accepts <D>:

H(D, <D>) accepts and D(<D>) rejects

If D rejects <D>,

H(D, <D>) rejects and D(<D>) accepts

Whatever D does, it must do the opposite, so there is a contraction!
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Proving Undecidability

Define D (<M>) = Construct a TM that:

Outputs the opposite of the result of simulating 

H on input <M, <M>>

Assume there exists some TM H that decides ATM.

Whatever D does, it must do the opposite, so there is a contraction!

So, D cannot exist.  But, if H exists, we know how to make D.

So, H cannot exist.  Thus, there is no TM that decides ATM.
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Recognizability of ATM

Decidable

Recognizable

ATM

Are there any languages outside Turing-Recognizable?
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Recall: Turing-Recognizable

A language L is “Turing-recognizable” if there 

exists a TM M such that for all strings w:

– If w ∈ L eventually M enters qaccept

– If w ∉ L either M enters qreject

or M never terminates

If M is Turing-recognizable and the complement of M is Turing-

recognizable, what is M?
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An Unrecognizable Language

Decidable

Recognizable

ATM

ATM
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Charge

• Next week: 

– How to you prove a problem is undecidable

– How long can a TM that eventually halts run?

• PS5 will be posted by Saturday, and due    

April 1 (this is a change from the original 

syllabus when it was due March 27)

• Exam 2 will be April 8 as originally scheduled


