
1

David Evans
http://www.cs.virginia.edu/evans

cs302: Theory of Computation

University of Virginia

Computer Science

Lecture 16: Lecture 16:

Universality and Universality and

UndecidabilityUndecidability

PS4 is due now

Some people have still not

picked up Exam 1! After

next week Wednesday, I will

start charging “storage fees”

for them.

2Lecture 16: Undecidability and Universality

Menu

• Simulating Turing Machines

• Universal Turing Machines

• Undecidability

3Lecture 16: Undecidability and Universality

Proof-by-Simulation

= Proof-by-Construction

To show an A (some class of machines) is as powerful

as a B (some class of machines) we need to show that

for any B, there is some equivalent A.

Proof-by-construction:

Given any b ∈ B, construct an a ∈ A that

recognizes the same language as b.

Proof-by-simulation:

Show that there is some A that can

simulate any B.

Either of these shows:
languages that can be recognized by a B ⊆ languages that can be recognized by an A

4Lecture 16: Undecidability and Universality

TM Simulations

Regular TM

2-tape, 2-head TM

“C
an b

e si
m

ulate
d b

y”

“C
an

 b
e sim

u
lated

 b
y”

3-tape, 3-head TM

“Can be

simulated

by”

“C
an

 b
e sim

u
lated

 b
y”

If there is a path from

M to Regular TM

and a path from

Regular TM to M

then M is equivalent

to a Regular TM

5Lecture 16: Undecidability and Universality

TM Simulations

Regular TM

2-tape, 2-head TM

“C
an b

e si
m

ulate
d b

y”

3-tape, 3-head TM

2-dimensional TM

Nondeterministic TM

2-DPDA+

PS4:3

6Lecture 16: Undecidability and Universality

Can a TM simulate a TM?

Can one TM simulate every TM?

Yes, obviously.

2

7Lecture 16: Undecidability and Universality

An Any TM Simulator

Input: < Description of some TM M, w >

Output: result of running M on w

Universal

Turing

Machine

M

w

Output

Tape

for running

TM-M

starting on

tape w

8Lecture 16: Undecidability and Universality

Manchester Illuminated Universal Turing Machine, #9

from http://www.verostko.com/manchester/manchester.html

9Lecture 16: Undecidability and Universality

Universal Turing Machines

• People have designed Universal Turing

Machines with

– 4 symbols, 7 states (Marvin Minsky)

– 4 symbols, 5 states

– 2 symbols, 22 states

– 18 symbols, 2 states

– 2 states, 5 symbols (Stephen Wolfram)

• November 2007: 2 state, 3 symbols

10Lecture 16: Undecidability and Universality

2-state, 3-symbol Universal TM

S
e

q
u

e
n

ce
 o

f
co

n
fi

g
u

ra
ti

o
n

s

11Lecture 16: Undecidability and Universality

Of course, simplicity is in the eye of the beholder.

The 2,3 Turing machine described in the dense new

40-page proof “chews up a lot of tape” to perform

even a simple job, Smith says. Programming it to

calculate 2 + 2, he notes, would take up more

memory than any known computer contains. And

image processing? “It probably wouldn't finish

before the end of the universe,” he says.

Alex Smith, University of

Birmingham

12Lecture 16: Undecidability and Universality

Rough Sketch of Proof

System 0 (the claimed UTM)

can simulate System 1

which can simulate System 2

which can simulate System 3

which can simulate System 4

which can simulate System 5

which can simulate any 2-color

cyclic tag system

which can simulate any TM.

See http://www.wolframscience.com/prizes/tm23/TM23Proof.pdf

for the 40-page version with all the details…

None of these

steps involve

universal

computation

themselves

3

13Lecture 16: Undecidability and Universality

Enumerating Turing Machines

• Now that we’ve decided how to describe

Turing Machines, we can number them

• TM-5023582376 = balancing parens

• TM-57239683 = even number of 1s

• TM-3523796834721038296738259873 = Universal TM

• TM-3672349872381692309875823987609823712347823 = WindowsXP
Not the real numbers

– they would be

much much much

much much bigger!

14Lecture 16: Undecidability and Universality

Acceptance Problem

Input: A Turing Machine M and an input w.

Output: Yes/no indicating if M eventually enters

qAccept on input w.

How can we state this as a language problem?

15Lecture 16: Undecidability and Universality

Acceptance Language

ATM = { <M, w> | M is a TM description

and M accepts input w }

If we can decide if a string is in ATM, then we can

solve the Acceptance Problem (as defined on the previous slide).

Is ATM Turing-recognizable?

16Lecture 16: Undecidability and Universality

Turing-Recognizable

A language L is “Turing-recognizable” if there

exists a TM M such that for all strings w:

– If w ∈ L eventually M enters qaccept

– If w ∉ L either M enters qreject

or M never terminates

… if there exists a TM M such that for all strings w:

– If w ∈ L eventually M enters qaccept or M never terminates

– If w ∉ L either M enters qreject or M never terminates

In a previous lecture, I incorrectly defined it as:

Why can’t this be the right definition?

17Lecture 16: Undecidability and Universality

Recognizing ATM

Run a UTM on <M, w> to simulate running M

on w. If the UTM accepts, <M, w> is in ATM.

Universal

Turing

Machine

M

w

Output

Tape

for running

TM-M

starting on

tape w

18Lecture 16: Undecidability and Universality

Recognizability of ATM

Decidable

Recognizable

ATM

Is it inside the Decidable circle?

4

19Lecture 16: Undecidability and Universality

Undecidability of ATM

• Proof-by-contradiction. We will show how to

construct a TM for which it is impossible to

decide ATM.

Define D (<M>) = Construct a TM that:

Outputs the opposite of the result of simulating

H on input <M, <M>>

Assume there exists some TM H that decides ATM.

If M accepts its own description <M>, D(<M>) rejects.

If M rejects its own description <M>, D(<M>) accepts.

20Lecture 16: Undecidability and Universality

Reaching a Contradiction

What happens if we run D on its own description, <D>?

Define D (<M>) = Construct a TM that:

Outputs the opposite of the result of simulating

H on input <M, <M>>

Assume there exists some TM H that decides ATM.

If M accepts its own description <M>, D(<M>) rejects.

If M rejects its own description <M>, D(<M>) accepts.

If D accepts its own description <D>, D(<D>) rejects.

If D rejects its own description <D>, D(<D>) accepts.
substituting

D for M…

21Lecture 16: Undecidability and Universality

Reaching a Contradiction

Define D (<M>) = Construct a TM that:

Outputs the opposite of the result of simulating

H on input <M, <M>>

Assume there exists some TM H that decides ATM.

If D accepts <D>:

H(D, <D>) accepts and D(<D>) rejects

If D rejects <D>,

H(D, <D>) rejects and D(<D>) accepts

Whatever D does, it must do the opposite, so there is a contraction!

22Lecture 16: Undecidability and Universality

Proving Undecidability

Define D (<M>) = Construct a TM that:

Outputs the opposite of the result of simulating

H on input <M, <M>>

Assume there exists some TM H that decides ATM.

Whatever D does, it must do the opposite, so there is a contraction!

So, D cannot exist. But, if H exists, we know how to make D.

So, H cannot exist. Thus, there is no TM that decides ATM.

23Lecture 16: Undecidability and Universality

Recognizability of ATM

Decidable

Recognizable

ATM

Are there any languages outside Turing-Recognizable?

24Lecture 16: Undecidability and Universality

Recall: Turing-Recognizable

A language L is “Turing-recognizable” if there

exists a TM M such that for all strings w:

– If w ∈ L eventually M enters qaccept

– If w ∉ L either M enters qreject

or M never terminates

If M is Turing-recognizable and the complement of M is Turing-

recognizable, what is M?

5

25Lecture 16: Undecidability and Universality

An Unrecognizable Language

Decidable

Recognizable

ATM

ATM

26Lecture 16: Undecidability and Universality

Charge

• Next week:

– How to you prove a problem is undecidable

– How long can a TM that eventually halts run?

• PS5 will be posted by Saturday, and due

April 1 (this is a change from the original

syllabus when it was due March 27)

• Exam 2 will be April 8 as originally scheduled

