Class 21:
Introducing
Complexity

¢s302: Theory of Computation
University of Virginia Computer Science

David Evans

http://www.cs.virginia.edu/evans

Good News

* 96% of you got 1a (a language is a set of
strings) correct

¢ Most people got most credit for:
— 2a (design a TM)
— 2b (cyclical T™M)

— 3a (one-way simulation proof claiming
equivalence)

Lecture 21: Introducing Complexity 3

— -
i Computer Science

Exam 2

Lecture 21: Introducing Complexity 2

= -
m; 1 g 1€ 1
i Computer Science |

Confusing News?

For question 1b (“Explain the essence of the
Church-Turing Thesis in a way that would be
understandable to a typical fifth grader”) more
than half of you assumed a 5t grader knows what
a Turing machine is (and about % assumed they
know Lambda calculus also!)

Coming up with a good answer for this question with time pressure is tough.

A good answer would either explain C-T thesis without needing TMs (using
things a 5t grader already understands), or include an explanation of what a

TMis. You can submit a new answer Tuesday. Or, find/make a 5t grader
who understands TMs well enough to actually understand your answer.

Lecture 21: Introducing Complexity 4

— -
i Computer Science

Bad News

e Only 25/81 (>= 8 on 4b) and 24/81 (>=8 on
4c) of you were able to get close to a
convincing reduction proof.

These were pretty tough questions, so many
its actually good news that ~30% got them.

¢ But, to solve complexity problem, you will
need to do tougher reduction proofs!

Practicing more now would be a good idea!

Lecture 21: Introducing Complexity 5

Good/Bad News

¢ You have an opportunity to improve your
score on Exam 2 by submitting improved
answers to these questions

e Good news: | will provide some hints how to
get started next.
¢ Bad news: Since | have provided hints, and

you have as much time as you need, | expect
very clear, convincing, correct answers.

= -
m; 1 g 1€ 1
il Computer Science |

- .
Lecture 21 Introducing Complexity 6 il Computer Science




4b

NOTSUBqy ={ <A, B> 1A and B are descriptions
of TMs and there is some string which is
accepted by A that is not accepted by B }

4c
Ly sypee = {<M, w, k> | M describes a TM, k is the
number of different FSM states M enters
before halting on w }

- 5
Lecture 21: Introducing Complexity 7 il Complit‘eyr Scte{,lce

- 5
Lecture 21: Introducing Complexity 8 F] Complit‘eyr Scte{,lce

Computability and Complexity

Classes 1-12 &

B

- 5
Lecture 21: Introducing Complexity 9 fiiiii Computer Science

1 UNIVERSITY o VIRGINA

- 5
Lecture 21: Introducing Complexity 10 fiiiii Computer Science

1 UNIVERSITY o VIRGINA

Classes 13-20

Decidable by any mechanical
computing machine

Today - End
Undecidable

Decidable

Tractable: “Decidable in

a reasonable amount of
time and space”

- 5
Lecture 21: Introducing Complexity 1 F] Complit‘eyr Scte{,lce

- 5
Lecture 21: Introducing Complexity 12 F] Complit‘eyr Scte{,lce




Computability Complexity

Undecidable
Decidable

Intractable

Tractable

. 1960s — 2150?
1800s — 1960s 1960s: Hartmanis and

iggg ?Htfert’ sCProbIemZI Numb Stearns: Complexity class
- Turing's Computable Numbers 1471, cook/Levin, Karp: P=NP?

1957: Chomsky’s Syntactic Structures 1976: Knuth'’s 0, Q, ©

(Mostly) “Dead” field Very Open and Alive

- :
Lecture 21: Introducing Complexity 13 il Computer Science

Interesting Complexity Classes

467 “interesting”
complexity
classes (and
counting)!

http://qwiki.stanford.edu/wiki/Complexity Zoo

Lecture 21: Introducing Complexity 15

— -
fiii Computer Science

The Most Terrifying Beast:
Subject of Ultimate Mystery

Decidable

Option 1: There are problems in
Class NP that are not tractable

Option 2: All problems in
Class NP are tractable

Complexity Classes

e Computability Classes: sets of problems
(languages) that can be solved
(decided/recognized) by a given machine

¢ Complexity Classes: sets of problems
(languages) that can be solved (decided) by a
given machine (usually a TM) within a limited
amount of time or space

How many complexity classes are there?

Infinitely many! “Languages that can be decided by some
TM using less than 37 steps” is a complexity class

Lecture 21: Introducing Complexity 14

= -
m; 1 g 1€ 1
i Computer Science |

The “Petting Zoo”

Petting Zoo

“Under construction! Once
finished, the Petting Zoo will
introduce complexity theory to
newcomers unready for the
terrifying and complex beasts
lurking in the main zoo.”

2 We will only get to the entrance of the “Petting Zoo”. But,
even here there are “terrifying and complex beasts lurking

|

- 5
Lecture 21: Introducing Complexity 16 il Computg.r Scne{lce
LT i DNivERsY Vs

Lecture 21: Introducing Complexity 17

P=NP?

¢ We need a couple more classes before
explaining this (but will soon)
¢ This is an open question: no one knows the
answer
— If you can answer it, you will receive fame,
fortune, and an A+ in cs302!

— But, you should get some insight into what an
answer would look like, and what it would mean

- :
Lecture 21: Introducing Complexity 18 il Computer Science

= -
m; 1 g 1€ 1
il Computer Science |




Order Notation
* O(f), Q(f),o(f),O(f)

e These notations define sets of functions

— Generally: functions from positive integer to
real

e We are interested in how the size of the
outputs relates to the size of the inputs

- 5
Lecture 21: Introducing Complexity 21 fiiiii Computer Science

1 UNIVERSITY o VIRGINA

Examples

o) fin)=12n*+n

fom) = 3

fin) = ¥ —n?

Lecture 21: Introducing Complexity 23

= -
m; 1 g 1€ 1
il Computer Science |

Order Notation

O(f), Q(f), o(f), O(f)

Warning: you have probably seen some of these notations
before in cs201 and cs216. What you learned about them
there was probably (somewhat) useful but incorrect. (Note: if
you learned them in cs150, then you learned them correctly.)

Lecture 21: Introducing Complexity 20

= -
m; 1 g 1€ 1
i Computer Science |

Big O

¢ Intuition: the set O(f) is the set of functions
that grow no faster than f
— More formal definition coming soon
e Asymptotic growth rate
— As input to fapproaches infinity, how fast does
value of fincrease
— Hence, only the fastest-growing term in f matters:
0(12n2 + n) € O(n?)
O(n) = 0(63n + log n —423)

- 5
Lecture 21: Introducing Complexity 2 fiiiii Computer Science

1 UNIVERSITY o VIRGINA

Formal Definition

fe O (g) means:

There are positive constants ¢ and n,
such that

fin) < cg(n)

for all valuesn = n,,

Lecture 21: Introducing Complexity 24

= -
m; 1 g 1€ 1
i Computer Science |




O Examples

f(n) € O(g(n) means: there are
positive constants ¢ and n, such that
fin) < cg(n) for all values n > n,.

xe€ 0 ((x2)? Yes, ¢ = 1, n=2 works fine.
10x € O (x)? Yes, ¢ = 11, n=2 works fine.

Lower Bound: 2 (Omega)
f(n) is Q (g (n)) means:

There are positive constants ¢ and n,
such that

f(n) 2 cg(n)

forall n 2 n,,.

Difference from O - this was <

- :
Lecture 21: Introducing Complexity 26 il Computer Science

X2 2 No, no matter what ¢ and n,
* we pick, cx? > x for big enough x
Lecture 21: Introducing Complexity 25 !TEE Compyfsfnﬁﬁif{,}gf‘\
Where is
Q(n?)?

o) fm)y=12n*+n

fom) = 3

/"

f(l’l) = n341 _ nz

Lecture 21: Introducing Complexity 27

Inside-Out

fin)=12n*+n

fin) = n®! —n?

Recap
¢ Big-O: the set O(f) is the set of functions that
grow no faster than f
— There exist positive integers ¢, ny > 0 such that f{(n)
< cg(n) forall n > n,.
* Omega (Q): the set Q(f) is the set of functions
that grow no slower than f

— There exist positive integers ¢, n, > 0 s.t. f(n) =
cg(n) for all n 2 ny,

- :
Lecture 21: Introducing Complexity 29 il Computer Science

Lecture 21: Introducing Complexity 28

What else might be useful?

0n) fin)=12n*+n

fom) = 3

fin) = 3! —n?

- :
Lecture 21: Introducing Complexity 30 il Computer Science




Theta (“Order of”)
e Intuition: the set O(f) is the set of functions that
grow as fast as f
* Definition: f(n) € ® (g (n)) if and only if both:
1L.f(m)e o(g ()
and 2. f(n) e Q (g (n))

— Note: we do not have to pick the same ¢ and n, values
for 1and 2

e When we say, “fis order g” that means

f(n)e ©(g (n)

Tight Bound Theta (®)

0n3) fin)=12n*+n

fom) = 3

y

fin) = 3! —n?

Faster Growing’

Lecture 21: Introducing Complexity 31

= -
m; 1 g 1€ 1
i Computer Science |

- :
Lecture 21: Introducing Complexity 32 il Computer Science

Summary

* Big-O: there exist ¢, n, > 0 such that f(n) <
cg(n) foralln 2 ny,.

» Omega (Q): there exist ¢, n,>0s.t. fin) =
cg(n) for all n > n,.

¢ Theta (®): both O and Q are true

When you were encouraged to use Big-O in cs201/cs216
to analyze the running time of algorithms, what should
you have been using?

Algorithm Analysis

e In Big-O notation, what is the running time of
algorithm X?

om™)

This is surely correct, at least for all
algorithms you saw in cs201/cs216.

Should ask: In Theta notation, what is the running time of
algorithm X?

Given an algorithm, should always be able to find a tight bound.

Lecture 21: Introducing Complexity 33

— -
fiii Computer Science

Lecture 21: Introducing Complexity 34

— -
i Computer Science

Complexity of Problems

So, why do we need O and Q7

We care about the complexity of problems
not algorithms. The complexity of a problem
is the complexity of the best possible
algorithm that solves the problem.

Revised exam answers are due at
beginning of class Tuesday.

Lecture 21: Introducing Complexity 35

= .
T 1€
iy Computer Science |




