cs302 Theory of Computation

UVa Spring 2008

Notes: Context-Free Languages

Thursday, 14 February

Upcoming Schedule

Monday, 18 February: Office Hours (Olsson 236A, 2-3pm); Help Session (Olsson 228E, 5:30-6:30pm)
Monday, 18 February (3:30pm): Annie Anton, North Carolina State University, *Designing Legally Compliant Software Systems that Contain Sensitive Information* (Department Colloquim in Olsson 009)
Tuesday, 19 February (2:02pm): Problem Set 3
Thursday, 28 February: Exam 1 (in class)

Context-Free Grammars

A *grammar* is context-free if all production rules have the form: $A \rightarrow \alpha \gamma \beta$ (that is, the left side of a rule can only be a single variable; the right side is unrestricted and can be any sequence of terminals and variables).

We can define a grammar as a 4-tuple (V, Σ, R, S) where V is a finite set (variables), Σ is a finite set (terminals), S is the start variable, and R is a finite set of rules, each of which is a mapping $V \to (V \cup \Sigma)^*$.

Example. (Similar to Sipser's Exercise 2.9) Give a context-free grammar that generates the language $\{a^i b^j c^k | i = j \text{ or } i = k \text{ where } i, j, k \ge 0\}$. Show how *abbc* is derived by your grammar. Show why *aaabbc* could not be derived by your grammar.

Model of Computation for CFGs

First, we describe the model of computation for CFGs using a function notation (not the traditional \Rightarrow notation).

Note that the grammar rules may have the same variable on the left side of may rules in R, so we cannot interpret R as a function. Instead, we define the function δ which captures the set of all right sides of rules for a given variable. The transition function $\delta : V \to \mathcal{P}((V \cup \Sigma)^*)$ (note the powerset operator - the output is a set of $(V \cup \Sigma)^*$ strings) is defined by:

 $\delta(A) = \{ \alpha | \alpha \in (V \cup \Sigma)^* \land A \to \alpha \in R \}$

Then, as with DFAs, we can define the extended transition function δ^* recursively:

$$\delta^*(\alpha) = \{\alpha\} \cup \bigcup_{\beta \in \delta(\alpha)} \delta^*(\beta)$$

A string w is in $G = (V, \Sigma, R, S)$ iff $w \in \delta^*(S)$.

Derivation. A more traditional way to define the model of computation for CFGs is using *derivation*. A grammar *G* derives a string *w* if there is a way to produce *w* starting from *S* following the rules in R. $S \Rightarrow^* w$ means *G* derives *w*. We define the \Rightarrow^* function somewhat similarly to the δ^* .

First, we define \Rightarrow , the one step derivation function in terms of *R*, the rules of the CFG:

If $A \to \gamma$ is in *R*, then $\alpha A \beta \Rightarrow \alpha \gamma \beta$ for $\alpha, \beta, \gamma \in (V \cup \Sigma)^*$.

That is, if there is a rule $A \rightarrow \gamma$ in R, anywhere A appears in a sequence of variables and symbols, we can replace the A with γ , leaving the rest of the string unchanged.

Now, we can define $\Rightarrow^*: (V \cup \Sigma)^* \to (V \cup \Sigma)^*$, to mean that there is some way to produce the right side following zero of more steps starting from the input string (we can think of \Rightarrow^* as outputing a set of strings, but define it using just single strings on the output side; the actual value of $derives(\alpha)$ is the set of all strings:

 $\alpha \Rightarrow^* \alpha$ — any string derives itself (no replacements done).

 $\alpha \Rightarrow^* \gamma$ if $\alpha \Rightarrow^* \beta$ and $\beta \Rightarrow \gamma$ — if we can go from α to β in zero or more steps, and from β to γ in one step, then we can derive γ from α .

The string *w* is in the language defined by the context-free grammar $G = (V, \Sigma, R, S)$ iff:

$$S \Rightarrow^* w$$

Proving Non-Context-Freeness

To show a language is not context-free, we need to prove there is no Context-Free Grammar that can generate the language. The strategy is similar to how we used the pumping lemma to show a language is non-regular. The pumping lemma for context-free languages gives us a property that must be true of any context-free language. We get a contradiction, but showing that there is no way to satisfy the properties of the pumping lemma for the given (non-context-free) language.

Pumping lemma for context-free languages. For any context-free language *A*, there is a pumping length *p* where all strings $s \in A$ with $|s| \ge p$ may be divided into 5 pieces, s = uvxyz satisfying these conditions:

- 1. for each $i \ge 0, uv^i xy^i z \in A$
- 2. |vy| > 0
- 3. $|vxy| \leq p$

Suppose there is a CFG *G* that generates *A*. Then any string $s \in A$ can be derived using *G*. Since *G* is a context-free grammar, each production rule has a single variable on the left side. That means in a derivation of *k* steps (where each step involves replacing one variable with the right of a corresponding rule) if $k \ge |V|$ then some variable $R \in V$ must be replaced twice:

$$S \Rightarrow^* uRz \Rightarrow^* uvRyz \Rightarrow^* uvxyz$$

The first replacement is $R \Rightarrow^* vRy$, which can be repeated any number of times, producing $v^i Ry^i$.

Example. $D = \{ww | w \in \{0, 1\}^*\}.$

Assume *D* is a context-free language. Then, there must be a CFG *G* that produces *D*, and the pumping lemma for context-free languages applies with pumping length *p*. As with pumping lemma for regular languages, we need to find *one* string *w* where $|w| \ge p$, and show that it cannot be pumped.

Pick w =

Show that all possible ways of dividing w = uvxyz fail to satisfy the pumping lemma for CFLs requirements.

Tricky Example. Is $X = \{w | w \in \{0,1\}^* \land$ there is no $z \in \{0,1\}^*$ such that $w = zz\}$ context-free?