
UVa - cs302: Theory of Computation Spring 2008

Final Exam Comments

< 50 50–59 60–69 70–79 80–89 90–94 95-102
Total 2 6 8 22 16 16 12

Problem 1: Short Answers. (20) For each question, provide a correct, clear, precise, and
concise answer from the perspective of a theoretical computer scientist.

a. [5] What is a language?

Answer: A set of strings.

b. [5] Describe a regular language that cannot be recognized by any current laptop.

Answer: Any infinite regular language includes strings that are longer than can be stored
in any real computer. So, for example, A = (01)∗. This assumes the entire input must be
stored; if it is streamed, then it can be recognized. So, a better example would be a regular
language that requires more states than can be stored on a current laptop. A language
consisting of a set of 101000 random strings would qualify.

c. [5] Explain why NP cannot stand for non-polynomial (even if P 6= NP).

Answer: The class NP includes the class P, so it includes all polynomial time problems.

d. [5] Explain the basic structure of a proof that language A is NP-Complete.

Answer:

1. Prove that A is in NP, usually by showing that there is a polynomial-time verifiable
certificate for A.

2. Prove that A is NP-Hard, by showing that a problem B that is known to be NP-Complete
can be reduced to A.

FC-1

Problem 2: Zero, One, Infinity. (14)

For each question, circle 0, 1 or ∞ to indicate wether the value of the described entity is
zero, one, or infinite. A correct answer receives full credit without any explanation. A
wrong answer with a good explanation may receive some partial credit.

a. [2] Assuming P = NP, the number of NP-Complete problems that are not in P.

Answer: 0. If P = NP, all NP-Complete problems are in P.

b. [2] Assuming P = NP, the number of NP-Hard problems that are not in P.

Answer: ∞. NP-Hard includes everything outside the NP-Complete inner circle.

c. [2] The number of strings that are in the language described by the context-free grammar
G (S is the start variable):

S → 0A
S → 1S
A→ S

Answer: 0. There is no way to produce a string, since all of the productions include vari-
ables on the right side.

d. [2] The number of strings that are in the language described by the context-free grammar
G (S is the start variable):

S → 0A
S → 1
A→ S

Answer: ∞. The language described is 00*1.

e. [2] The smallest possible number of strings in a language that is undecidable.

Answer: 1. If it contains 0 strings, then it can’t be undecidable (since all inputs reject). An
example of an undecidable language that contains one string is:

f. [2] The number of languages that are equivalent to HALTTM .

Answer: 1. (Recall question 1a: a language is a set of strings.)

g. [2] The number of languages that are in TIME(N2) that can be decided by a multi-
dimensional Turing machine in O(N) steps.

Answer: ∞. TIME(N2) includes all languages that can be decided by a regular TM in
O(N) steps, so obviously, these languages can be decided by a MDTM on O(N) steps too.

FC-2

Problem 3: Drawing Classes. (16)

Each label in the diagram below corresponds to one of the following computability and
complexity classes: (1) TIME(N2), (2) P, (3) Decidable, (4) NP, (5) TIME(1), (6) Regular.

Assuming P 6= NP, identify the class (1-6) associated with each label (circle the correct
answer):

a. (3) Decidable
b. (4) NP
c. (2) P
d. (1) TIME(N2)
e. (6) Regular
f. (5) TIME(1)

g. Which of the given classes include the language
{
0i1j |j > i

}
? (circle all classes that

include this language)

(1) TIME(N2) (2) P (3) Decidable (4) NP

Answer: The given language is non-regular, but can be recognized by a deterministic
pushdown automaton. This means it is certainly Decidable, within NP, and within P, since
we can simulate a PDA using a Turing machine in polynomial time. Deciding if it is also in
TIME(N2) is a bit more difficult, since we need to think about the number of steps required
to decide it. In general, we can simulate a PDA with a TM using O(N2) steps since we can
simulate the PDA with the TM by putting the stack after the input. Since the PDA is a de-
terministic PDA, each step consumes one input, and adds or removes at most one symbol
from the stack. So, there are N steps. The maximum work for each step is to move to the
square that represents the top of the stack (the rightmost square), read the stack symbol,
and write a new stack symbol (overwriting the blank to the right of the top of the stack).
The maximum size of the stack is N symbols (since it starts empty, and each step pushes at

FC-3

most one symbol), so the maximum length the TM has to travel is 2N in each direction, or
4N squares total (of course, this is not actually possible, since the stack starts empty and
the TM head moves across the input). Hence, there are N steps to simulate, each of which
can be simulated in 4N steps or less, so the total work of the simulation is in O(N2). This
shows that any language that can be recognized by a DPDA, can be decided by a TM in
TIME(N2).

Problem 4: Hardness Proofs. (30)

a. [10] Prove the language
{
0i10i|i ≥ 0

}
is not regular.

Answer: We prove A =
{
0i10i|i ≥ 0

}
is non-regular by using the pumping lemma for

regular languages to obtain a contradiction.

Assume A is regular. Then, according to the pumping lemma, there is some pumping
length p such that for any string s ∈ A where |s| ≥ p, we can divide s = xyz such that for
each i ≥ 0, xyiz ∈ A and |y| > 0 and |xy| ≤ p.

Choose s = 0p10p. Since |xy| ≤ p all possible divisions of s have xy within the first string
of 0p. Since |y| > 0, y must contain at least on 0 and no 1. Thus, pumping y increases the
number of 0s before the 1, but does not change the number of 0s after the 1. To be in the
language the number of 0s on the left side must equal the number of 0s on the right side,
so this produces a string that is not in A. By contradiction, we have shown that A is not
regular.

b. [10] Is the language MORETM defined below undecidable? (Answer clearly, and pro-
vide a convincing proof supporting your answer.)

MORETM = {〈A, B〉} where A and B are descriptions of Turing machines,
and the size of the language accepted by A is larger than the size of the
language accepted by B.

Answer: Undecidable. Prove by reducing some known undecidable problem to MORETM .
We reduce ETM = {〈M〉 |M is a TM and L(M) = �}, which is known to be undecidable,
to MORETM .

If we had a decived for MORETM , we can build a decider for ETM since M is in ETM only
if it accepts no strings. Hence, if it accepts more than zero strings, it is not in ETM .

ETM (〈M〉) =

Simulate MORETM on 〈M,REJECT 〉where REJECT is a TM that rejects all
inputs.

If MORETM accepts, reject. If MORETM rejects, accept.

FC-4

c. [10] Is the language NO-SUBSET defined below in the class NP-Hard? (Answer clearly,
and provide a convincing proof supporting your answer.)

NO-SUBSET = {〈{x1, x2, . . . , xn} , m〉} where each xi is a number represented
in binary, and there is no subset of the xi’s which sums to m, a number
represented in binary.

Answer: Yes. If we had a polynomial time solver for NO-SUBSET, we could build a poly-
nomial time solver for SUBSET-SUM, which is known to be NP-Complete.

SUBSET-SUM(〈{x1, x2, . . . , xn} , m〉) =

Simulate NO-SUBSET on 〈{x1, x2, . . . , xn} , m〉. (Given the assumption, this
takes polynomial time.)

If it accepts, reject. If it rejects, accept.

Thus, we have a polynomial time reduction from SUBSET-SUM to NO-SUBSET, proving
that NO-SUBSET is NP-Hard.

Problem 5: Closure. (20)

a. [5] Are the decidable languages closed under concatenation? That is, if A and B are
decidable languages, is the language C = {ab|a ∈ A and b ∈ B} a decidable language?
(Provide a convincing proof to support your answer.)

Answer: Yes. Since A and B are decidable, there exist TMs MA and MB that decide A
and B respectively. We can construct a TM MC that decides C but trying all possible ways
of splitting the input w into a and b. (Note that we cannot just simulate MA first until it
accepts, since this can alter the input tape, we wouldn’t know how to start MB). There
are a finite (N) number of possible ways of splitting the input. For each possible split,
simulate MA on a. If it accepts, simulate MB on b. If it accepts, accept. Otherwise, try the
next possilbe split. If none of the possible splits accept, reject.

b. [5] Describe what one would need to do to prove a language A is not in the class NP-
Complete.

Answer: Either (1) prove A is not in NP, by showing why it cannot be decided by a NDTM
in polynomial time, or (2) prove P 6= NP, then prove A is in P.

In The Limits of Quantum Computers (your Spring Break reading), Scott Aaronson writes: “If
we really could build a magic computer capable of solving an NP-complete problem in a
snap, the world would be a very different place: we could ask our magic computer to look
for whatever patterns might exist in stock-market data or in recordings of the weather or
brain activity. Unlike with todays computers, finding these patterns would be completely
routine and require no detailed understanding of the subject of the problem. The magic
computer could also automate mathematical creativity. Given any holy grail of mathemat-
ics such as Goldbachs conjecture or the Riemann hypothesis, both of which have resisted

FC-5

resolution for well over a century – we could simply ask our computer to search through
all possible proofs and disproofs containing up to, say, a billion symbols.”

c. [5] Explain why the proof-finding problem is in NP.

Answer: A proof is a polynomial-time verifiable certificate.

d. [5] Do you agree with the claim that a computer that could solve NP-complete problems
in polynomial time could also automate mathematical creativity? (Write a brief paragraph
arguing for or against Aaronson’s claim.)

Answer: I believe there are stronger arguments against the claim (although good argu-
ments supporting it still received full credit). Although a magic NP=P computer could
explore an exponential number of possibilities in polynomial time, it cannot explore an in-
finite number of possibilities in any amount of time. So, it can produce results like, “There
is no proof that is shorter than a billion symbols.”, but not results like, “There is no proof.”.
The first type of result leaves the possibility that there is a proof with a billion and one sym-
bols. It does not even mean there is not a short, elegant proof that would be convincing to
a mathematician. To explore the proof space, the TM encodes a set of axioms and rules for
making inferences from those axioms, and tries all possible ways of using those inference
rules starting from the axioms. Many mathematical breakthroughs, however, depend on
new proof techniques, not just applying the known inference rules. In theory, all correct
proof techniques could be broken down into more primitive inference rules, but the power
of the proof techniques is that it enables a short proof. For example, when we use proof-
by-induction, all sorts of logical properties about sets and reasoning are embedded in the
proof technique, leading to a short an convincing proof. I suspect mathemeticians would
find non-proofs generated by such a machine, as enlightening and convincing as arguing
that there is no odd perfect number becuase a computer has tested all numbers up to 10300

without finding one. Now, if we have a magic computer that could solve undecidable
problems, that would really be something!

Problem 6: Busy Bunny. (Bonus)

Is the BUSY-BUNNY language defined below NP-Complete? (Prove or disprove.)

BUSY-BUNNY = {〈n, s, k〉}where k is the maximum number of 1 symbols that
can be on the final tape of a Turing machine with n states and 2 symbols
that halts within s steps, starting from a blank input tape.

Answer:

As a starting point, consider the answer to problem 5b: to prove BUSY-BUNNY is not in
NP-Complete we need to either (1) prove that it is not in NP, or (2) prove that it is in P and
P 6= NP. We can prove that it is in NP, so option (1) doesn’t work.

There are a finite number of TMs with n states and 2 symbols. We can enumerate them all,
and simulate each one for up to s steps. After finishing the simulation, count the number
of 1 symbols on the simulated tape. If there is at least one TM that produces k symbols, and

FC-6

none that produce more than k symbols, the string 〈n, s, k〉 is in BUSY-BUNNY; otherwise
it is not. We can simulate a TM running for s steps in polynomial time in s. The number
of possible TMs with n states, though, is exponential in n. The problem does appear to be
in NP, since we could nondeterministically simulate all of these possible TMs for s steps
in polynomial time. However, we cannot simulate all TMs (in a straightforward way) for
s steps in polynomial time on a deterministic TM, so it the brute force algorithm for this
is not in P. This leaves us believing that perhaps the problem is NP-Complete. To prove it,
though, we would need to find a reduction from some known NP-Complete problem to
the BUSY-BUNNY problem. Alas, no one came up with one that seemed to be convincing,
so I still don’t know whether or not BUSY-BUNNY is NP-Complete, but this is something
for you to think about over the summer.

The best answer we got to this question was this one, by Jalysa Conway:

FC-7

