Learning Theory Overview

Dimitris Diochnos

University of Virginia
Department of Computer Science

Spring 2017
CS 6501 - Learning Theory
Outline

1. Preliminaries
2. PAC Learning and VC-Dimension
Learning Theory in One Line

Find a Good Approximation of a Function with High Probability
Learning Theory

Goal (Good Approximation with High Probability)
There is a function \(c \) over a space \(X \). One wants to come up (in a reasonable amount of time) with a function \(h \) such that \(h \) is a good approximation of \(c \) with high probability.

Description (Parameters and Terminology)
- \(X \): Instance Space
- \(c \in C \): Target Concept
- \(h \in H \): Hypothesis
- Good Approximation: Small Error \(\varepsilon \)
- High Probability: Confidence \(1 - \delta \)
- Reasonable Amount of Time: Polynomial in \(n, 1/\varepsilon, 1/\delta \)

Example
\[
X = \{0, 1\}^n \quad \quad \quad c = x_1 \land x_2 \land x_3 \quad \quad \quad h = x_1 \land x_4
\]
Probably Approximately Correct (PAC) Learning

- There is an arbitrary, unknown distribution \mathcal{D} over X.
- Learn from examples $(x, c(x))$, where $x \sim \mathcal{D}$.
- $\text{error}(h, c) = \Pr(h(x) \neq c(x))$.

Goal (Valiant, 1984)

$$\Pr(\text{error}(h, c) \leq \varepsilon) \geq 1 - \delta.$$
Efficiently PAC Learning Conjunctions

Let $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $c = x_1 \land \overline{x}_3 \land x_4$.

- Request m examples and look on the positive ones.

<table>
<thead>
<tr>
<th>example</th>
<th>hypothesis h</th>
</tr>
</thead>
<tbody>
<tr>
<td>((11010), +)</td>
<td>$x_1 \land \overline{x}_1 \land x_2 \land \overline{x}_2 \land x_3 \land \overline{x}_3 \land x_4 \land \overline{x}_4 \land x_5 \land \overline{x}_5$</td>
</tr>
<tr>
<td>((10010), +)</td>
<td>$x_1 \land x_2 \land \overline{x}_3 \land x_4 \land \overline{x}_5$</td>
</tr>
<tr>
<td>((10011), +)</td>
<td>$x_1 \land \overline{x}_3 \land x_4$</td>
</tr>
<tr>
<td></td>
<td>$x_1 \land \overline{x}_3 \land x_4$</td>
</tr>
</tbody>
</table>

Theorem (PAC Learning of Finite Concept Classes)

For every distribution D, drawing $m \geq \frac{1}{\varepsilon} \cdot \left(\ln |C| + \ln \frac{1}{\delta} \right)$ examples guarantees that any consistent hypothesis h satisfies $\Pr(\text{error}(h, c) \leq \varepsilon) \geq 1 - \delta$.

- For conjunctions $|C| = 3^n + 1$.
- Efficiently PAC learning because the algorithm runs in poly-time.
- What about infinite concept classes (e.g. halfspaces)?
Different Classifications and the Growth Function

- $\mathbf{x} = (x_1, x_2, \ldots, x_m)$ is a set of m examples.

Number of Classifications $\Pi_H(x)$ of x by H: Distinct vectors $(h(x_1), h(x_2), \ldots, h(x_m))$ as h runs through H.

- $\Pi_H(x) \leq 2^m$.

Different Classifications and the Growth Function

- \(x = (x_1, x_2, \ldots, x_m) \) is a set of \(m \) examples.

Number of Classifications \(\Pi_\mathcal{H}(x) \) **of** \(x \) **by** \(\mathcal{H} \): Distinct vectors

\((h(x_1), h(x_2), \ldots, h(x_m)) \) as \(h \) runs through \(\mathcal{H} \).

- \(\Pi_\mathcal{H}(x) \leq 2^m \).

Growth Function: \(\Pi_\mathcal{H}(m) = \max\{\Pi_\mathcal{H}(x) : x \in X^m\} \).

Example

Rays on a line:

\(h_\vartheta(x) = \begin{cases} + & \text{if } x \geq \vartheta \\ - & \text{otherwise} \end{cases} \)

\(\Pi_\mathcal{H}(m) = m + 1 \).
The Vapnik-Chervonenkis Dimension

Definition

A sample \(x \) of size \(m \) is *shattered* by \(\mathcal{H} \), or \(\mathcal{H} \) *shatters* \(x \), if \(\mathcal{H} \) can give all \(2^m \) possible classifications of \(x \).

Definition (VC dimension)

\[
VC\text{-dim}(\mathcal{C}) = \max \{ m : \prod_{\mathcal{C}}(m) = 2^m \}
\]

- Our ray example has \(VC\text{-dim}(\text{Rays}) = 1 \).
 - One point is shattered.
 - Two points are not shattered (+, −)

- Lower Bound \(\implies \) Explicit construction that achieves \(2^m \).
- Upper Bound \(\implies \) For any sample \(x \) of length \(m \) we can not achieve \(2^m \).
Configurations of 3 Points in 2D
Halfspaces Shatter 3 Points in 2D

Question
Can we shatter 4 points?
Can Halfspaces Shatter 4 Points in 2D?
Halfspaces can *not* Shatter 4 Points in 2D

Theorem (Radon)

Any set of $d + 2$ points in \mathbb{R}^d can be partitioned into two (disjoint) sets whose convex hulls intersect.

Corollary

- $VC\text{-}dim(\text{HALFSPACES}) = 3$ in 2 dimensions.
- $VC\text{-}dim(\text{HALFSPACES}) = d + 1$ in $d \geq 1$ dimensions.
Sauer’s Lemma

Lemma (Sauer’s Lemma)

Let $d \geq 0$ and $m \geq 1$ be given integers and let \mathcal{H} be a hypothesis space with $VC\text{-dim}(\mathcal{H}) = d$. Then

$$\Pi_{\mathcal{H}}(m) \leq 1 + \binom{m}{1} + \binom{m}{2} + \cdots + \binom{m}{d} = \Phi(d, m).$$

Proposition

For all $m \geq d \geq 1$, $\Phi(d, m) < \left(\frac{em}{d}\right)^d$.
VC-Dimension

Theorem

Let \mathcal{C} have finite $\text{VC-dim}(\mathcal{C}) = d \geq 1$ and moreover let $0 < \delta, \varepsilon < 1$. Then,

$$m \geq \left\lceil \frac{4}{\varepsilon} \cdot \left(d \cdot \lg \left(\frac{12}{\varepsilon} \right) + \lg \left(\frac{2}{\delta} \right) \right) \right\rceil$$

samples guarantee that any consistent hypothesis has small error with high probability (in the PAC-learning sense).

- We still need an efficient algorithm to efficiently PAC-learn the class.