

Is this enough? Can we define add with pred, succ, zero? and zero? add = $\lambda x \cdot \lambda y$. (if (zero? x) y (add (pred x) (succ y))	Can we define lambda terms that behave like zero, zero?, pred and succ ? Hint: The <i>length</i> of the list corresponds to the number value.					
Making Numbers $0 \equiv \text{null}$ $\text{zero?} \equiv \text{null?}$ $\text{pred} \equiv \text{cdr}$ $\text{succ} \equiv \lambda x . (\text{cons F} x)$ $\text{pred} \equiv \lambda x. (\text{cdr } x)$	42 = $\lambda xy. (\lambda z.z xy) \lambda xy. y \lambda xy. (\lambda z.z xy) \lambda xy. y$ $\lambda xy. (\lambda z.z xy) \lambda xy. y \lambda xy. (\lambda z.$					

Lambda Calculus is a Universal Computer

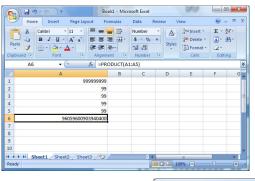
Way to Keep Going: The Y-Combinator

Universal Computer

- Lambda Calculus can simulate a Turing Machine
 - Everything a Turing Machine can compute, Lambda Calculus can compute also
- Turing Machine can simulate Lambda Calculus (we didn't prove this)
 - Everything Lambda Calculus can compute, a Turing Machine can compute also
- Church-Turing Thesis: this is true for any other mechanical computer also

Computability in Theory and Practice

(Intellectual Computability Discussion on TV Video)


http://video.google.com/videoplay?docid=1623254076490030585# http://www.funny-videos.co.uk/videoAliGScienceVideo39.html

Ali G Problem

Input: a list of 2 numbers with up to *d* digits each **Output:** the product of the 2 numbers

Is it computable? Yes – a straightforward algorithm solves it. Using elementary multiplication techniques we know it is in $O(d^2)$

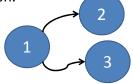
Can real computers solve it?

Eile	Edit Debug		Optic	<u>Options</u>		<u>W</u> indows			Help		
>>>	9999	99999	* 99	*	99	*	99	*	99		
9605	59600	90394	399L								
>>>											

Ali G was Right!

- Theory assumes ideal computers:
 - Unlimited, perfect memory
 - Unlimited (but finite) time
- Real computers have:
 - Limited memory, time, power outages, flaky programming languages, etc.
 - There are many computable problems we cannot solve with real computer: the actual inputs *do* matter (in practice, but not in theory!)

Things Real Computers Can Do That Turing Machines Cannot



Provide an adequate habitat for fish

Nondeterministic Turing Machine

- At each step, instead of making one choice and following it, the machine can simultaneously try two choices.
- If any path of choices leads to a halting state, that machine's state is the result of the computation.

Can a nondeterministic TM solve problems in polynomial time ($O(N^k)$ for some constant k) that cannot be solved in polynomial time by a regular TM?

Answer: Unknown! This is the most famous and important open question in Computer Science: P = NP?

Ways to answer this:

- 1. Write a polynomial time pegboard puzzle
 - solver (or prove it can't be done)
- Write a polynomial time optimal photomosaic maker (or prove it can't be done)

Ways to Think about Nondeterminism

Omnipotent: It can try all possible solutions at once to find the one that is right.

Omniscient: Whenever it has to make a choice, it always guess right.

Can a regular TM model a nondeterministic TM?

Yes, just simulate all the possible machines.

Course Summary: Three Main Themes

Recursive Definitions

Recursive procedures, recursive data structures, languages

Universality

Procedures are just another kind of data A universal computing machine can simulate all other computing machines

Abstraction: giving things names and hiding details Digital abstraction, procedural abstraction, data abstraction, objects

Things that are likely to be on the Final

Defining Procedures

- How to define procedures to solve problems, recursive procedures
- Functional and imperative style programming
- Analyzing Procedures
 - Asymptotic run-time analysis, memory use

Interpreters

- Understanding how interpreter defines meaning and running time of a language
- Being able to change a language by modifying an interpreter

Computing Models

- Proving a problem is computable or noncomputable
- Is a computing model equivalent to a TM?

NYTimes article today that mentions my 2005 crypto final!

Charge

- Sunday (4:59pm): to qualify for a presentation, you must have some basic functionality working
- Monday: Project Presentations
 - or...Project Reports (for non-presenting teams)
 - Presentation time will be divided among the qualifying teams (if all teams qualify, less than 2 minutes!): time to explain your project and demo its most interesting functionality
- Final Exam: will be posted Monday

I will have extended extra office hours (either in my office or Small Hall) on Sunday afternoon, 1:30-5pm (groups that upload projects by Saturday will have priority)