
cs1120: Final Exam - Comments 

 

Defining Procedures 
 

For questions 1-3, provide a procedure with the described procedure.  For each question, you may 
use either Scheme or Python for your procedure.  If you are not confident your code is correct, it 

is also a good idea to include an English prose description of your procedure.  

  
1. (Average: 8.8/10) Define a procedure count-positive that takes a input a list of numbers and 

produces as output a number representing the number of positive numbers in the input list.   

 

For example, 
 

 Scheme:  (count-positive (list 3 -2 4 0 12)) 

 Python:   count_positive([3, -2, 4, 0, 12]) 

 

should evaluate to 3. 

 

Scheme: 

(define (count-positive p) 

    (if (null? p) 0 

        (+ (if (> (car p) 0) 1 0) (count-positive (cdr p))))) 

or, 

(define (count-positive p) 

    (list-length (list-filter (lambda (x) (> x 0)) p))) 

 
Python: 

def count_positive(p): 

   count = 0 

   for x in p: 

      if x > 0: count = count + 1 

   return count 

 
or, 

def count_positive(p): 

   len(filter(lambda x: x > 0, p)) 
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2. (7.5) (Exercise 4.8) Define a procedure find-maximum-epsilon that takes as input a function f, 
a low range value low, a high range value high, and an increment epsilon, and produces as 

output the maximum value of f in the range between low and high at interval epsilon.  

 

For example, 
 

   Scheme:  (find-maximum-epsilon (lambda (x) (* x (- 5.5 x))) 1 10 1) 

    Python: find_maximum_epsilon(lambda x: x * (5.5 - x), 1, 10, 1) 
 

should evaluate to 7.5. 

 

 

Scheme: 

(define (find-maximum-epsilon f low high epsilon) 

   (if (>= low high) 

       (f low) 

       (bigger (f low) 

                     (find-maximum-epsilon f (+ low epsilon) high epsilon)))) 

Python: 

def find_maximum_epsilon(f, low, high, epsilon): 

   res = f(low) 

   while low <= high: 

       res = max(res, f(low)) 

       low = low + epsilon 

   return res 
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3. (8.25) Define a procedure item-count that takes as input a list of items, and outputs a list of 
<item, count> pairs indicating for each item that appears in the input list the number of times 

that item occurs. 

 

For example, 
 

 Scheme: (item-count (list 'everything 'plain 'plain 'salt 'sesame 'everything)) 

 Python:   item_count(['everything', 'plain', 'plain', 'salt', 'sesame', 'everything']) 
 

should evaluate to: 

 

 Scheme: (('everything . 2) ('plain . 2) ('salt . 1) ('sesame . 1)) 

 Python: {'everything':  2, 'plain' : 2, 'salt': 1, 'sesame': 1} 

 

(note that the order in which elements appear in the output doesn’t matter). 

 

This is very similar to the histogram procedure from Class 27 (and Exam 2). 

 
def item_count(p): 

    d = {} 

    for x in p: 

        if x in d: 

            d[x] = d[x] + 1 

        else: 

            d[x] = 1 

    return d 
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Analyzing Procedures 

 
4. (9.3) What is the asymptotic running time of the list-cruncher procedure defined below: 

 

(define (list-cruncher p) 

    (if (null? p)  
         null 

         (if (odd? (car p) ) 

              (list-cruncher (cdr p)) 
              (cons (car p) (list-cruncher (cdr p)))))) 

  

For full credit, your answer must carefully define the meaning of any variables you use. 
 

The running time of list-cruncher is in Θ(N) where N is the number of elements in 

p. 

 

Other than the recursive call, the procedure involves applications of only constant 

time procedures: null?, car, cdr, cons, and odd? (note that odd? should be 

constant time, since we can tell if a number is odd by only looking it its rightmost 

bit, so the time to test for odd-ness does not scale with the size of the input 

number).  The number of recursive calls is the number of elements in p, since 

each recursive call passed in (cdr p), and the base case is when the list is null. 
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5. (8.1) What is the worst-case asymptotic running time of the disjoint procedure defined 
below?   

 

def disjoint(p1, p2): 

    """Returns true if p1 and p2 are disjoint (that is, there is no common element in  
         both lists.)""" 

    for e1 in p1: 

        for e2 in p2: 
            if e1 == e2: 

                return False 

    return True  
 

For full credit, your answer must carefully define the meaning of any variables you use in 

terms of the size of the input, and explain what the worst-case inputs are. 

 

  
 

 

 

The worst-case running time of disjoint is in Θ(N
2
) where N is the total input size. 

 

The worst-case input is when the lists are disjoint (or equivalent, when the very 

last elements checked match).  In this case, we need to go through all elements of 

p1, and for each of these, go through all elements of p2.  The outer for loop will 

iterate N1 times, where N1 is the number of elements in p1; the inner loop will 

iterate N2 times for each element in p1, where N2 is the number of elements in 

p2.  So, the total number of loop iterations (that is, the number of times, the if 

predicate e1 == e2 must be evaluated) is N1 * N2.  For a given input size N = N1 

+ N2, the value of N1 * N2 is maximized when N1 = N2.   
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6. (5.8) Suppose you have two correct sorting procedures, sortA and sortB.  The sortA procedure 

has asymptotic running time in Θ(N
2
) where N is the number of elements in the input list.  

The sortB has asymptotic running time in O(N log N) where N is the number of elements in 
the input list.  For a given application, you need to sort a list of 1120 numbers.  Which 

procedure is best for this application?  (Either provide a clear argument of which procedure is 

best, or a convincing explanation of why you do not have enough information to answer the 
question.) 

 

 
 

 

People had a tough time with this one.  In some ways, it is a “trick” question, but 

the intent is to see how well you understand the meaning of the asymptotic 

operators and can relate theoretical results to practical questions (ala Ali G).  The 

correct answer is that there is not enough information to answer the question.  

Recall that the asymptotic operators hide constants.  So, functions that are in 

Θ(N
2
) include 0.0001N

2 
and functions that are in O(N log N) include 

99999999999 N + 123859382493.  So, for these examples, the O(N log N) 

function’s value for N=1120 is higher than the Θ(N
2
) function’s value.  For a high 

enough input N, the Θ(N
2
) value will always eventually be larger than that of any 

function in O(N log N) since N
2
 grows faster than N log N, but for any particular 

value of N, the value of a function in O(N log N) may be higher. 

 

Another reason the sortA procedure might be better (even in cases where its 

running time is higher) is if there are other concerns more important than running 

time, for example memory use. 
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Computability 
 

7. (7.1) (similar to Exercise 12.2) Is the Same-Result problem described below computable or 

noncomputable?  Provide a convincing argument supporting your answer. 

 

Input: Descriptions of two Turing Machines, M1 and M2 

 
Output: If the result of running M1 starting with an empty input tape is the same as the  

 result of running M2 starting with an empty input tape, output a 1 at the left edge  

 of the tape.  Otherwise, output a 0 at the left edge of the tape.  Two Turing 

Machines are considered to produce the same result if either they both do not 
halt, or they both halt and leave the final tape with the same contents. 

 

 
The Same-Result problem is noncomputable. 

 

Proof: if we had an algorithm to solve Same-Result, we could use it to define an 

algorithm that solves Halts: 

 

def halts(p): 

   return not same_result(p, INFINITE_LOOP) 

 

where INFINITE_LOOP is a Turing Machine that loops forever (never halts).   

 

If the input p halts, it is not the same as INFINITE_LOOP, and halts as defined 

above correctly returns True.  If p does not halt, it has the same result as 

INFINITE_LOOP, and halts correctly returns False.  Thus, a same_result 

algorithm that solves the Same-Result problem would allow us to define a halts 

algorithm.  But, since we know halts is noncomputable, this shows Same-Result is 

also noncomputable. 
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8. (5.0) (Challenging) Is the Moves-Past-Square-1120 problem described below computable or 

noncomputable?  Provide a convincing argument supporting your answer. 

 

Input: Description of a Turing Machine, M 

 

Output: If running M starting with an empty input tape would ever move past the 1120
th
 

square on the input tape, output true; otherwise, output false.   The input tape is infinite in 

one direction (to the right), and starts on the leftmost square.  The squares are numbered 

starting from 0, so output should be true if M would ever go beyond the square 1120 
squares to the right of the left edge of the tape. 

 
 

 

 

 
 

 

The Moves-Past-Square-1120 problem is computable. 

 

The main intuition why is that the problem is finite: if we limit our TM to 1121 

squares (since we don’t care what happens after it moves past the 1120
th
 square), 

the total number of possible TM configurations is finite.  It’s a huge number: 

nA
1120

 where n is the number of states in M’s FSM and A is the number of alphabet 

symbols.  But, since both n and A must be finite, for any TM M there is some 

maximum possible number of configurations.   

 

Then, to solve Moves-Past-Square-1120, we start with an array containing nA
1120

 

elements, all initialized to False.  For each simulation step, we check if the element 

corresponding to the current TM state is True.  If it is, that means we have repeated 

a configuration and the TM is in an infinite loop.  The result is False (the TM is in 

an infinite loop, but it never goes past square 1120).  If not, we simulate M’s 

transition to the next state.  If the simulate TM ever moves past square 1120, the 

result is True.  Since each step either leads to a result, or changes one of the 

elements in the configuration array to True, after at most nA
1120

 steps the 

simulation must be finished. 

 

Thus, this algorithm always halts and always produces the correct result.  Hence, 

Moves-Past-Square-1120 is computable. 
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Interpreters 

 

9. (7.7) The Charme interpreter from PS7/Chapter 11 does not define a begin special form.  

Extend the Charme interpreter to support a begin special for with the evaluation rule: 
 

Evaluation Rule: Begin.  To evaluate a begin expression,  

  
   (begin Expression1 Expression2  … Expressionk) 

 

evaluate each subexpression in order from left to right.  The value of the begin expression 

is the value of the last subexpression, Expressionk. 
 

Define an evalBegin procedure that evaluates a begin expression.  You may assume the 

expression passed into your procedure is a valid begin expression (that is, you do not need to 
include defensive error checking code in your procedure). 

 

 

 

 

def evalBegin(expr, env): 

   for subexpr in expr[1:-1]: 

      meval(subexpr, env) 
   return meval(expr[-1], env) 



 10

Computing Concepts 

 

For the last question, you will need another person.  This must be someone who has no significant 

computing knowledge.  In particular, they should have never written a computer program or taken 
a computing course.  Henceforth, we will call this person the student.   Your student will need to 

help you for about 10-15 minutes.  It is best if you can find someone who is 5-13 years, but if you 

can’t find someone young it is fine to use a UVa student as your student as long as she/he does 
not have any significant computing knowledge.  

 

Your goal for this question is to pick some concept from this course and convey something 

important and interesting about it to your student.  The concept you choose to explain may be 
anything you what that was covered in the class and has some intellectual value.  Examples of 

possible concepts include recursive definitions, defining languages, computability, the Church-

Turing thesis, or sorting algorithms, but you do not need to limit yourself to these examples.   
 

10. (8.4) a. Identify one major concept from this course, and describe in your own words what it 

is and what is interesting and important about it.  Write a short plan for how you will 
introduce and describe this concept to your student, and what you hope your student will 

understand after your lesson.  Feel free to include pictures or drawings, and anything else that 

you think will be helpful. 

 
b. Find your student and explain the concept to her/him, following your plan from part a.  

Write a short summary of how things went.  Your summary should include interesting 

questions your student asked and how you answered them, and a description of what you 
think your student understood at the end of the lesson. 

 
The most popular topics were recursive definitions (by far the most popular), inheritance, running 

time, languages, and computability.  Other interesting choices included endless golden ages, lists, 
and sorting.  Most people had some success conveying their topic to their student. 

 

A few interesting quotes: 
 

"I told this to her and she just kind of looked at me funny and laughed." 

 
"At the end of the lesson, I think she had an appreciation for the rules and methods of 

combination which underpin all languages, and certainly empathy for how confusing computer 

science can be at first!" 

 
"He was intrigued by the statement "I always lie" and said thinking about it gave him a 

headache." 

 
"He said to me, "So it sounds like computer science doesn't really have that much to do with 

computers at all."  14 years old.  Hell of a lot smarter than I was at that age." 

 

"I actually found this portion of the exam very rewarding, becuase I got to show my roommate 
what I have been doing countless hours this semester.  He told me that he'll stick to his reading 

and essay writing in his history major as this is not how his brain works." 

 


