
cs1120: Final Exam - Comments

Defining Procedures

For questions 1-3, provide a procedure with the described procedure. For each question, you may
use either Scheme or Python for your procedure. If you are not confident your code is correct, it

is also a good idea to include an English prose description of your procedure.

1. (Average: 8.8/10) Define a procedure count-positive that takes a input a list of numbers and

produces as output a number representing the number of positive numbers in the input list.

For example,

 Scheme: (count-positive (list 3 -2 4 0 12))

 Python: count_positive([3, -2, 4, 0, 12])

should evaluate to 3.

Scheme:

(define (count-positive p)

 (if (null? p) 0

 (+ (if (> (car p) 0) 1 0) (count-positive (cdr p)))))

or,

(define (count-positive p)

 (list-length (list-filter (lambda (x) (> x 0)) p)))

Python:

def count_positive(p):

 count = 0

 for x in p:

 if x > 0: count = count + 1

 return count

or,

def count_positive(p):

 len(filter(lambda x: x > 0, p))

 2

2. (7.5) (Exercise 4.8) Define a procedure find-maximum-epsilon that takes as input a function f,
a low range value low, a high range value high, and an increment epsilon, and produces as

output the maximum value of f in the range between low and high at interval epsilon.

For example,

 Scheme: (find-maximum-epsilon (lambda (x) (* x (- 5.5 x))) 1 10 1)

 Python: find_maximum_epsilon(lambda x: x * (5.5 - x), 1, 10, 1)

should evaluate to 7.5.

Scheme:

(define (find-maximum-epsilon f low high epsilon)

 (if (>= low high)

 (f low)

 (bigger (f low)

 (find-maximum-epsilon f (+ low epsilon) high epsilon))))

Python:

def find_maximum_epsilon(f, low, high, epsilon):

 res = f(low)

 while low <= high:

 res = max(res, f(low))

 low = low + epsilon

 return res

 3

3. (8.25) Define a procedure item-count that takes as input a list of items, and outputs a list of
<item, count> pairs indicating for each item that appears in the input list the number of times

that item occurs.

For example,

 Scheme: (item-count (list 'everything 'plain 'plain 'salt 'sesame 'everything))

 Python: item_count(['everything', 'plain', 'plain', 'salt', 'sesame', 'everything'])

should evaluate to:

 Scheme: (('everything . 2) ('plain . 2) ('salt . 1) ('sesame . 1))

 Python: {'everything': 2, 'plain' : 2, 'salt': 1, 'sesame': 1}

(note that the order in which elements appear in the output doesn’t matter).

This is very similar to the histogram procedure from Class 27 (and Exam 2).

def item_count(p):

 d = {}

 for x in p:

 if x in d:

 d[x] = d[x] + 1

 else:

 d[x] = 1

 return d

 4

Analyzing Procedures

4. (9.3) What is the asymptotic running time of the list-cruncher procedure defined below:

(define (list-cruncher p)

 (if (null? p)
 null

 (if (odd? (car p))

 (list-cruncher (cdr p))
 (cons (car p) (list-cruncher (cdr p))))))

For full credit, your answer must carefully define the meaning of any variables you use.

The running time of list-cruncher is in Θ(N) where N is the number of elements in

p.

Other than the recursive call, the procedure involves applications of only constant

time procedures: null?, car, cdr, cons, and odd? (note that odd? should be

constant time, since we can tell if a number is odd by only looking it its rightmost

bit, so the time to test for odd-ness does not scale with the size of the input

number). The number of recursive calls is the number of elements in p, since

each recursive call passed in (cdr p), and the base case is when the list is null.

 5

5. (8.1) What is the worst-case asymptotic running time of the disjoint procedure defined
below?

def disjoint(p1, p2):

 """Returns true if p1 and p2 are disjoint (that is, there is no common element in
 both lists.)"""

 for e1 in p1:

 for e2 in p2:
 if e1 == e2:

 return False

 return True

For full credit, your answer must carefully define the meaning of any variables you use in

terms of the size of the input, and explain what the worst-case inputs are.

The worst-case running time of disjoint is in Θ(N
2
) where N is the total input size.

The worst-case input is when the lists are disjoint (or equivalent, when the very

last elements checked match). In this case, we need to go through all elements of

p1, and for each of these, go through all elements of p2. The outer for loop will

iterate N1 times, where N1 is the number of elements in p1; the inner loop will

iterate N2 times for each element in p1, where N2 is the number of elements in

p2. So, the total number of loop iterations (that is, the number of times, the if

predicate e1 == e2 must be evaluated) is N1 * N2. For a given input size N = N1

+ N2, the value of N1 * N2 is maximized when N1 = N2.

 6

6. (5.8) Suppose you have two correct sorting procedures, sortA and sortB. The sortA procedure

has asymptotic running time in Θ(N
2
) where N is the number of elements in the input list.

The sortB has asymptotic running time in O(N log N) where N is the number of elements in
the input list. For a given application, you need to sort a list of 1120 numbers. Which

procedure is best for this application? (Either provide a clear argument of which procedure is

best, or a convincing explanation of why you do not have enough information to answer the
question.)

People had a tough time with this one. In some ways, it is a “trick” question, but

the intent is to see how well you understand the meaning of the asymptotic

operators and can relate theoretical results to practical questions (ala Ali G). The

correct answer is that there is not enough information to answer the question.

Recall that the asymptotic operators hide constants. So, functions that are in

Θ(N
2
) include 0.0001N

2
and functions that are in O(N log N) include

99999999999 N + 123859382493. So, for these examples, the O(N log N)

function’s value for N=1120 is higher than the Θ(N
2
) function’s value. For a high

enough input N, the Θ(N
2
) value will always eventually be larger than that of any

function in O(N log N) since N
2
 grows faster than N log N, but for any particular

value of N, the value of a function in O(N log N) may be higher.

Another reason the sortA procedure might be better (even in cases where its

running time is higher) is if there are other concerns more important than running

time, for example memory use.

 7

Computability

7. (7.1) (similar to Exercise 12.2) Is the Same-Result problem described below computable or

noncomputable? Provide a convincing argument supporting your answer.

Input: Descriptions of two Turing Machines, M1 and M2

Output: If the result of running M1 starting with an empty input tape is the same as the

 result of running M2 starting with an empty input tape, output a 1 at the left edge

 of the tape. Otherwise, output a 0 at the left edge of the tape. Two Turing

Machines are considered to produce the same result if either they both do not
halt, or they both halt and leave the final tape with the same contents.

The Same-Result problem is noncomputable.

Proof: if we had an algorithm to solve Same-Result, we could use it to define an

algorithm that solves Halts:

def halts(p):

 return not same_result(p, INFINITE_LOOP)

where INFINITE_LOOP is a Turing Machine that loops forever (never halts).

If the input p halts, it is not the same as INFINITE_LOOP, and halts as defined

above correctly returns True. If p does not halt, it has the same result as

INFINITE_LOOP, and halts correctly returns False. Thus, a same_result

algorithm that solves the Same-Result problem would allow us to define a halts

algorithm. But, since we know halts is noncomputable, this shows Same-Result is

also noncomputable.

 8

8. (5.0) (Challenging) Is the Moves-Past-Square-1120 problem described below computable or

noncomputable? Provide a convincing argument supporting your answer.

Input: Description of a Turing Machine, M

Output: If running M starting with an empty input tape would ever move past the 1120
th

square on the input tape, output true; otherwise, output false. The input tape is infinite in

one direction (to the right), and starts on the leftmost square. The squares are numbered

starting from 0, so output should be true if M would ever go beyond the square 1120
squares to the right of the left edge of the tape.

The Moves-Past-Square-1120 problem is computable.

The main intuition why is that the problem is finite: if we limit our TM to 1121

squares (since we don’t care what happens after it moves past the 1120
th
 square),

the total number of possible TM configurations is finite. It’s a huge number:

nA
1120

 where n is the number of states in M’s FSM and A is the number of alphabet

symbols. But, since both n and A must be finite, for any TM M there is some

maximum possible number of configurations.

Then, to solve Moves-Past-Square-1120, we start with an array containing nA
1120

elements, all initialized to False. For each simulation step, we check if the element

corresponding to the current TM state is True. If it is, that means we have repeated

a configuration and the TM is in an infinite loop. The result is False (the TM is in

an infinite loop, but it never goes past square 1120). If not, we simulate M’s

transition to the next state. If the simulate TM ever moves past square 1120, the

result is True. Since each step either leads to a result, or changes one of the

elements in the configuration array to True, after at most nA
1120

 steps the

simulation must be finished.

Thus, this algorithm always halts and always produces the correct result. Hence,

Moves-Past-Square-1120 is computable.

 9

Interpreters

9. (7.7) The Charme interpreter from PS7/Chapter 11 does not define a begin special form.

Extend the Charme interpreter to support a begin special for with the evaluation rule:

Evaluation Rule: Begin. To evaluate a begin expression,

 (begin Expression1 Expression2 … Expressionk)

evaluate each subexpression in order from left to right. The value of the begin expression

is the value of the last subexpression, Expressionk.

Define an evalBegin procedure that evaluates a begin expression. You may assume the

expression passed into your procedure is a valid begin expression (that is, you do not need to
include defensive error checking code in your procedure).

def evalBegin(expr, env):

 for subexpr in expr[1:-1]:

 meval(subexpr, env)
 return meval(expr[-1], env)

 10

Computing Concepts

For the last question, you will need another person. This must be someone who has no significant

computing knowledge. In particular, they should have never written a computer program or taken
a computing course. Henceforth, we will call this person the student. Your student will need to

help you for about 10-15 minutes. It is best if you can find someone who is 5-13 years, but if you

can’t find someone young it is fine to use a UVa student as your student as long as she/he does
not have any significant computing knowledge.

Your goal for this question is to pick some concept from this course and convey something

important and interesting about it to your student. The concept you choose to explain may be
anything you what that was covered in the class and has some intellectual value. Examples of

possible concepts include recursive definitions, defining languages, computability, the Church-

Turing thesis, or sorting algorithms, but you do not need to limit yourself to these examples.

10. (8.4) a. Identify one major concept from this course, and describe in your own words what it

is and what is interesting and important about it. Write a short plan for how you will
introduce and describe this concept to your student, and what you hope your student will

understand after your lesson. Feel free to include pictures or drawings, and anything else that

you think will be helpful.

b. Find your student and explain the concept to her/him, following your plan from part a.

Write a short summary of how things went. Your summary should include interesting

questions your student asked and how you answered them, and a description of what you
think your student understood at the end of the lesson.

The most popular topics were recursive definitions (by far the most popular), inheritance, running

time, languages, and computability. Other interesting choices included endless golden ages, lists,
and sorting. Most people had some success conveying their topic to their student.

A few interesting quotes:

"I told this to her and she just kind of looked at me funny and laughed."

"At the end of the lesson, I think she had an appreciation for the rules and methods of

combination which underpin all languages, and certainly empathy for how confusing computer

science can be at first!"

"He was intrigued by the statement "I always lie" and said thinking about it gave him a

headache."

"He said to me, "So it sounds like computer science doesn't really have that much to do with

computers at all." 14 years old. Hell of a lot smarter than I was at that age."

"I actually found this portion of the exam very rewarding, becuase I got to show my roommate
what I have been doing countless hours this semester. He told me that he'll stick to his reading

and essay writing in his history major as this is not how his brain works."

