

What does θ really mean?

- $O(x)$ - it is no more than x work (upper bound)
- $\Theta(x)$ - work scales as x (tight bound)
- $\Omega(x)$ - it is at least x work
(lower bound)
If $O(x)$ and $\Omega(x)$ are true, then $\Theta(x)$ is true.

O Examples

$f(x)$ is $O(g(x))$ means:
There is a positive constant c such that

$$
c * f(x)<g(x)
$$

for all but a finite number of x values.
x is $O\left(x^{2}\right) ?$
$10 x$ is $O(x) ?$
x^{2} is- $-(x) ?$
No, no matter what c we pick, $c x^{2}>x$ for big enough x

- compose and n-times
- Measuring Work:

What θ really means

- Quicker Sorting

CS150 Fall 2005: Lecture 10: Measuring Work

Meaning of O ("big Oh")

$f(x)$ is $O(g(x))$ means:
There is a positive constant c such that

$$
c^{*} f(x)<g(x)
$$

for all but a finite number of x values.

Lower Bound: Ω (Omega)

$f(x)$ is $\Omega(g(x))$ means:
There is a positive constant c such that

$$
c^{*} f(x)>g(x)
$$

for all but a finite number of x values.

$$
\text { Difference from } O \text { - this was < }
$$

$f(x)$ is $\Omega(g(x))$ means: There is a positive constant c such that $c^{*} f(x)>g(x)$ for all but a finite number of x values. $f(x)$ is $O(g(x))$ means: There is a positive constant c such that $c^{*} f(x)<g(x)$ x is $\Omega(x) \quad$ for all but a finite number of x values. - Yes, pick $c=2 \quad-$ Yes, pick $c=.5$ $10 x$ is $\Omega(x) \quad-10 x$ is $O(x)$ - Yes, pick $c=1 \quad$-Yes, pick $c=.09$ Is $x^{2} \Omega(x)$? $\quad x^{2}$ is not $O(x)$ - Yes!	
So Fal 2005: Lecture 10: Measurin	7 .

Tight Bound: $\boldsymbol{\theta}$ (Theta)

$f(x)$ is $\theta(g(x))$ iff:
$f(x)$ is $O(g(x))$
and $f(x)$ is $\Omega(g$
(x))

CS150 Fall 2005: Lecture 10: Measuring Work
Computer Science

Takes over 1 second to sort 1000-length list. How long would it take to sort 1 million items?

$$
\begin{aligned}
& 1 \mathrm{~s}=\text { time to sort } 1000 \\
& 4 \mathrm{~s} \sim \text { time to sort } 2000 \\
& 1 \mathrm{M} \text { ic } 1000 * 1000
\end{aligned} \quad \Theta\left(n^{2}\right)
$$

Sorting time is n^{2}
so, sorting 1000 times as many items will take 1000^{2} times as long $=1$ million seconds ~ 11 days
Note: there are 800 Million VISA cards in circulation. It would take 20,000 years to process a VISA transaction at this rate.

Divide and Conquer sorting?

- simple-sort: find the lowest in the list, add it to the front of the result of sorting the list after deleting the lowest
- Insertion sort: insert the first element of the list in the right place in the sorted rest of the list

insertsort (define (insertsort cf Ist) (if (null? Ist) null (insertone cf (car Ist) (insertsort cf (cdr Ist)))))	

How much work is insertsort?
> (insertsort < (revintsto 20))
(1 2345678910111213141516171819 20) Requires 190 applications of <
> (insertsort < (intsto 20))
(1 2345678910111213141516171819 20) Requires 19 applications of <
> (insertsort < (rand-int-list 20))
(011161923263132323442455363648182
8484 92)
Requires 104 applications of $<$
How many times does Worst case?
insertsort evaluate insertone? Average case?
n times (once for each element)
insertsort is $\Theta\left(n^{2}\right)$
insertone is $\Theta(n)$

simplesort vs. insertsort

- Both are $\Theta\left(n^{2}\right)$ worst case (reverse list)
- Both are $\Theta\left(n^{2}\right)$ average case (random)
-But insert-sort is about twice as fast
- insertsort is $\Theta(n)$ best case (ordered list)

Charge

- Read Tyson's essay (before Friday)
- How does it relate to $\theta\left(n^{2}\right)$
- How does it relate to grade inflation
- Don't misinterpret it as telling you to run out and get tattoos and piercings!
(first-half Ist)
(second-half Ist)
that quickly divided the list in two halves?

Charge
- Read Tyson's essay (before Friday)
- How does it relate to $\theta\left(n^{2}\right)$
- How does it relate to grade inflation
- Don't misinterpret it as telling you to run out
and get tattoos and piercings!

