

	$f(x)$ is Ω (g (x)) means:
Fyamples	There is a positive constant <i>c</i> such that
Examples	c * f(x) > g(x) for all but a finite number of a values
	for all but a liftle further of x values. $f(x)$ is $O(q_1(x))$ means:
	There is a positive constant c such that
	c * f(x) < g(x)
	for all but a finite number of x values.
• $x $ is $SZ(x)$	• x is $O(x)$
– Yes, pick	c = 2 – Yes, pick $c = .5$
• $10x$ is $\Omega(x)$	• $10x$ is $O(x)$
– Yes, pick	c = 1 - Yes, pick $c = .09$
• Is $x^2 \Omega(x)$	• x^2 is not $O(x)$
– Yes!	
CS150 Fall 2005: Lecture 10: Meas	rring Work 7 Computer Science

Can we do better?

(insertone < 88 (list 1 2 3 5 6 23 63 77 89 90))

Suppose we had procedures (first-half lst) (second-half lst) that quickly divided the list in two halves?

CS150 Fall 2005: Lecture 10: Measuring Work

19 Computer Science

