

Astrophysics

- "If you're going to use your computer to simulate some phenomenon in the universe, then it only becomes interesting if you change the scale of that phenomenon by at least a factor of $10 \ldots$ For a 3D simulation, an increase by a factor of 10 in each of the three dimensions increases your volume by a factor of 1000 ."
- How much work is astrophysics simulation (in Θ notation)?

When we double the size of the simulation, the work octuples! (Just like oceanography octopi simulations)
CS150 Fall 2005: Lecture 11: Golden Ages and Complexity
Computer Science

Astrophysics and Moore's Law

- Simulating universe is $\Theta\left(n^{3}\right)$
- Moore's law: computing power doubles every 18 months
- Tyson: to understand something new about the universe, need to scale by $10 x$
- How long does it take to know twice as much about the universe?

Knowledge of the Universe

;i; doubling every 18 months $=\sim 1.587 *$ every 12 months (define (computing-power nyears)
(if (= nyears 0) 1
(* 1.587 (computing-power (- nyears 1)))))
i;; Simulation is $\theta\left(\mathrm{n}^{3}\right)$ work
(define (simulation-work scale)
(* scale scale scale))
$($ define $(\log 10 x)(/(\log x)(\log 10))) ; ; ; \log$ is base e ;;; knowledge of the universe is $\log 10$ the scale of universe ;i; we can simulate
(define (knowledge-of-universe scale) (log10 scale))

Knowledge of the Universe

(define (computing-power nyears)
(if ($=$ nyears 0$) 1\left({ }^{*} 1.587\right.$ (computing-power (- nyears 1$)$)))
;i; doubling every 18 months $=\sim 1.587 *$ every 12 months
(define (simulation-work scale) ($*$ scale scale scale))
i; Simulation is $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$ work
ii: primitive \log is natural (base e)
(define (knowledge-of-universe scale) (log10 scale))
iii knowledge of the universe is log 10 the scale of universe we can simulate
(define (find-knowledge-of-universe nyears)
(define (find-biggest-scale scale)
;i; today, can simulate size 10 universe = 1000 work
(if (> (/ (simulation-work scale) 1000)
(computing-power nyears))
(- scale 1)
(find-biggest-scale (+ scale 1))))
(knowledge-of-universe (find-biggest-scale 1)))

Insert Sort

(define (insertsort of Ist) (define (insertel cf el Ist) (if (null? Ist) (if (null? Ist) null (insertel cf (list el)
(if (cf el (car Ist))
(cons el Ist)
(cons (car Ist) (insertel cf el (cdr Ist))))))
insertsort is $\Theta\left(n^{2}\right)$ (car Ist) (insertsort cf (cdr Ist)))))
\qquad

Can we do better?

(insertel < 88
(list 1235623637789 90))

Suppose we had procedures
(first-half Ist)
(second-half Ist)
that quickly divided the list in two halves?

Divide and Conquer

- Both simplesort and insertsort divide the problem of sorting a list of length n into:
- Sorting a list of length n-1
- Doing the right thing with one element
- Hence, there are always n steps
- And since each step is $\theta(n)$, they are $\theta\left(n^{2}\right)$
- To sort more efficiently, we need to divide the problem more evenly each step

How much work is insertelh?

Suppose first-half and second-half are $\theta(1)$

How much work is insertelh?

Suppose first-half and second-half are $\theta(1)$

insertsorth

Same as insertsort, except uses insertelh

(define (insertsorth cf Ist) $\underset{\substack{\text { (if (null? lst) }}}{\text { (define (inselh of el Ist) }}$ (if (null? Ist) null
(insertelh cf (car Ist) (insertsorth
(list el)
(let ((fh (first-half Ist)) (sh (second-half lst)))
(if (cf el (car fh)) (if (cf el (car fh))
(append (cons el fh) sh)
(if (null? sh) (if (null? sh)
(append fh (list el)) cf (if (cf el (car sh))) (cdr Ist)))))
(append fh
(insertelh cf el sh())))))))
insertsorth would be $\Theta\left(n \log _{2} n\right)$ if we have fast first-half/second-half

Is there a fast first-half procedure?

- No!
- To produce the first half of a list length n, we need to cdr down the first $n / 2$
elements
- So:
- first-half is $\theta(n)$
- insertelh calls first-half every time...so
- insertelh is $\theta(n) * \theta\left(\log _{2} n\right)=\theta\left(n \log _{2} n\right)$
- insertsorth is $\theta(n) * \theta\left(n \log _{2} n\right)=\theta\left(n^{2} \log _{2} n\right)$

[^0]CS150 Fall 2005: Lecture 11: Golden Ages and Complexity
18 Computer Science

The Endless Golden Age

- Golden Age - period in which knowledge/quality of something doubles quickly
- At any point in history, half of what is known about astrophysics was discovered in the previous 15 years!
- Moore's law today, but other advances previously: telescopes, photocopiers, clocks, etc.

CS150 Fall 2005: Lecture 11: Golden Ages and Complexity
Computer Science

Short Golden Ages

- Golden Age - period in which knowledge/quality of something doubles quickly
- Endless golden age: at any point in history, the amount known is twice what was known 15 years ago
- Short golden age: knowledge doubles during a short, "golden" period, but only improves gradually most of the time

Endless Golden Age and "Grade Inflation"

- Average student gets twice as smart and well-prepared every 15 years
- You had grade school teachers (maybe even parents) who went to college!
- If average GPA in 1970 is 2.00 what should it be today (if grading standards didn't change)?

Grade Inflation or Deflation?	
2.00	average GPA in 1970 ("gentleman's C"?)
* 2	better students 1970-1988
* 2	better students 1988-2005
* 3	admitting women, non-whites (1971)
* 1.54	population increase Virginid 1970 $4,6488,494$
* 0.58	increase in enrollment Virginia 2000 7,078,515
Average	GPA today should be: $\begin{array}{lc}\text { Students } 1970 & 11,000 \\ \text { Students } 2002 & 18,848 \\ & (12,595 \text { UG) }\end{array}$
21.4	CS150 has only the best of the best students, and only the best $31 / 34$ of them stayed in the course after PS1, so the average grade in CS150 should be $21.4 * 2 * 2 * 34 / 31=\mathbf{9 3 . 9}$

The Real Golden Rule?

Why do fields like astrophysics, medicine, biology and computer science (?) have "endless golden ages", but fields like

- music (1775-1825)
- rock n' roll (1962-1973, or whatever was popular when you were 16)
- philosophy (400BC-350BC?)
- art (1875-1925?)
- soccer (1950-1974)
- baseball (1925-1950)
- movies (1920-1940)

Thanks to Leah Nylen for correcting this (previously I had only 1930-1940, but that
is only true for Hollywood movies). have short golden ages?

Charge

- PS3 due Monday
- Understanding the universe is $\Theta\left(n^{3}\right)$ -Are there any harder problems?
- If you want to be famous pick a major that has a short golden age from 2005-2020
- Our Constitution Day recognition will be in Monday's class

[^0]: Yikes! We've done all this work, and its still worse than our simplesort!

