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Why are we spending so much 
time on sorting?

• Reason 1: its important

• Reason 2: it is a well 
defined problem for 
exploring algorithm 
design and complexity 
analysis

A sensible programmer rarely (if ever) writes 
their own code for sorting – there are sort 
procedures provided by all major languages 800 pages long!
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Art of Computer Programming, Donald E. Knuth

• Volume 1 (1968): Fundamental Algorithms

• Volume 2: Seminumerical Algorithms

– Random numbers, arithmetic

• Volume 3: Sorting and Searching

• Volume 4: Combinatorial Algorithms (in preparation, 
2005)

• Volume 5: Syntactic Algorithms (estimated for 2010)

• Volume 6, 7: planned

The first finder of any error in my books receives $2.56; significant suggestions 
are also worth $0.32 each. If you are really a careful reader, you may be able to 
recoup more than the cost of the books this way. 
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Recap: insertsort-tree
(define (insertel-tree cf el tree)
(if (null? tree)
(make-tree null el null)
(if (cf el (get-element tree))
(make-tree (insertel-tree cf el (get-left tree))

(get-element tree)
(get-right tree))

(make-tree (get-left tree)
(get-element tree)
(insertel-tree cf el (get-right tree))))))

(define (insertsort-tree cf lst)
(define (insertsort-worker cf lst)
(if (null? lst) null
(insertel-tree cf (car lst) 

(insertsort-worker cf (cdr lst)))))
(extract-elements (insertsort-worker cf lst)))

θ(log n)

n = number of
elements in tree

θ(n log n)

n = number of
elements in lst
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Can we do better?

• Making all those trees is a lot of work

• Can we divide the problem in two halves, 
without making trees?
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Quicksort

• Sir C. A. R. (Tony) Hoare, 1962

• Divide the problem into:

– Sorting all elements in the list where 

(cf (car list) el) 

is true (it is < the first element)

– Sorting all other elements 

(it is >= the first element)

• Will this do better?
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Quicksort

(define (quicksort cf lst)
(if (null? lst) lst
(append 
(quicksort cf
(filter (lambda (el) (cf el (car lst))) 

(cdr lst)))
(list (car lst))
(quicksort cf
(filter (lambda (el) (not (cf el (car lst))))

(cdr lst))))))  
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How much 
work is 
quicksort?

(define (quicksort cf lst)
(if (null? lst) lst
(append 
(quicksort cf
(filter (lambda (el) (cf el (car lst))) 

(cdr lst)))
(list (car lst))
(quicksort cf
(filter (lambda (el) (not (cf el (car lst))))

(cdr lst))))))  

What if the input list is sorted?

Worst Case: Θ(n2)

What if the input list is random?

Expected: Θ(n log2 n)
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Comparing sorts
> (testgrowth insertsort-tree)
n = 250, time = 20
n = 500, time = 80
n = 1000, time = 151
n = 2000, time = 470
n = 4000, time = 882
n = 8000, time = 1872
n = 16000, time = 9654
n = 32000, time = 31896
n = 64000, time = 63562
n = 128000, time = 165261
(4.0 1.9 3.1 1.9 2.1 5.2 3.3 2.0 2.6)

> (testgrowth quicksort)
n = 250, time = 20
n = 500, time = 80
n = 1000, time = 91
n = 2000, time = 170
n = 4000, time = 461
n = 8000, time = 941
n = 16000, time = 2153
n = 32000, time = 5047
n = 64000, time = 16634
n = 128000, time = 35813
(4.0 1.1 1.8 2.7 2.0 2.3 2.3 3.3 2.2)

Both are Θ(n log2 n)  

Absolute time of quicksort much faster
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Good enough for VISA?
n = 128000, time = 35813

36 seconds to sort 128000 with quicksort

Θ(n log2 n)  

How long to sort 800M items?
> (log 4)
1.3862943611198906
> (* 128000 (log 128000))
1505252.5494914246
> (/ (* 128000 (log 128000)) 36)
41812.57081920624
> (/ (* 128000 (log 128000)) 41812.6)
35.99997487578923
> (/ (* 800000000 (log 800000000)) 41812.6)
392228.6064130373 392000 seconds ~ 4.5 days
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Are there any procedures more 
complex than simulating the 

universe (Θ(n3)) ?
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Permuted Sorting

• A (possibly) really dumb way to sort:

– Find all possible orderings of the list 
(permutations)

– Check each permutation in order, until you find 
one that is sorted

• Example: sort (3 1 2)

All permutations: 

(3 1 2) (3 2 1) (2 1 3) (2 3 1) (1 3 2) (1 2 3)
is-sorted? is-sorted?is-sorted? is-sorted? is-sorted? is-sorted?
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permute-sort

(define (permute-sort cf lst)
(car 
(filter (lambda (lst) (is-sorted? cf lst)) 

(all-permutations lst))))
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is-sorted?

(define (is-sorted? cf lst)
(or (null? lst) (= 1 (length lst)) 
(and (cf (car lst) (cadr lst))

(is-sorted? cf (cdr lst)))))
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all-permutations
(define (all-permutations lst)
(flat-one
(map
(lambda (n)
(if (= (length lst) 1)
(list lst) ; The permutations of (a) are ((a)) 
(map 
(lambda (oneperm)
(cons (nth lst n) oneperm))
(all-permutations (exceptnth lst n)))))

(intsto (length lst)))))

16CS150 Fall 2005: Lecture 13: Problems and Procedures

> (time (permute-sort <= (rand-int-list 5)))
cpu time: 10 real time: 10 gc time: 0
(4 14 14 45 51)
> (time (permute-sort <= (rand-int-list 6)))
cpu time: 40 real time: 40 gc time: 0
(6 29 39 40 54 69)
> (time (permute-sort <= (rand-int-list 7)))
cpu time: 261 real time: 260 gc time: 0
(6 7 35 47 79 82 84)
> (time (permute-sort <= (rand-int-list 8)))
cpu time: 3585 real time: 3586 gc time: 0
(4 10 40 50 50 58 69 84)
> (time (permute-sort <= (rand-int-list 9)))

Crashes!
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How much 
work is 
permute-sort?

• We evaluated is-sorted? once for each 
permutation of lst.

• How much work is is-sorted??

Θ(n)
• How many permutations of the list are 
there?

(define (permute-sort cf lst)
(car 
(filter (lambda (lst) (is-sorted? cf lst)) 

(all-permutations lst))))
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Number of permutations

• There are n = (length lst) values in the first map, 
for each possible first element

• Then, we call all-permutations on the list without 
that element (length = n – 1)

• There are n * n – 1 * … * 1  permutations

• Hence, there are n! lists to check: Θ(n!)

(map
(lambda (n)
(if (= (length lst) 1) (list lst) 
(map (lambda (oneperm) (cons (nth lst n) oneperm))

(all-permutations (exceptnth lst n)))))
(intsto (length lst)))
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Are there any procedures more 
complex than simulating the 

universe (Θ(n3)) ?

Maybe this is the wrong question…
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Procedures and Problems

• So far we have been talking about 
procedures (how much work is permute-
sort?)

• We can also talk about problems: how 
much work is sorting?

• A problem defines a desired output for a 
given input.  A solution to a problem is a 
procedure for finding the correct output 
for all possible inputs.
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The Sorting Problem

• Input: a list and a comparison 
function

• Output: a list such that the elements 
are the same elements as the input 
list, but in order so that the 
comparison function evaluates to true 
for any adjacent pair of elements
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Problems and Procedures
• If we know a procedure that is that is 

Θ(f(n)) that solves a problem then we know 

the problem is O (f(n)).

• The sorting problem is O (n!) since we 
know a procedure (permute-sort) that 

solves it in Θ (n!)

• Is the sorting problem is Θ(n!)?
No, we would need to prove there is no 

better procedure.
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Problems and Procedures
• Sorting problem is O(n log n)

– We know a procedure (quicksort) that solves 

sorting in Θ(n log n)

• Is the sorting problem Θ(n log n)?

– To know this, we need to prove there is no 
procedure that solves the sorting problem with 
time complexity better than Θ(n log n)
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Sorting problem is Ω(n log n)

• There are n! possible orderings 

• Each comparison can eliminate at best ½
of them

• So, best possible sorting procedure is 
Ω(log2n!)

• Sterling’s approximation: n! = Ω(nn)

– So, best possible sorting procedure is 

Ω(log (nn)) = Ω(n log n) Recall log multiplication
is normal addition:
log mn = log m + log n
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Problems and Procedures
• Sorting problem is Θ(n log n)

– We know a procedure (quicksort) that solves sorting in 

Θ(n log n)

– We know there is no faster procedure since best sorting 
procedure is Ω(n log n)

• This is unusual: there are very few problems for 
which we know Θ

– It is “easy” to get O for a problem: just find a procedure 
that solves it

– It is extraordinarily difficult to get Ω for most 
problems: need to reason about all possible procedures
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Charge
• Next class: 

– Some problems that are “hard”
• No procedure is known that is less complex than 
simulating the universe

– Introduce the most famous and important 
open problem in Computer Science

• Are these really hard problems?

• Will return PS3 Friday

• PS4: Due Monday


