

Menu

- Complexity Classes P and NP
- Quiz Answers
- Problem Reductions

Smileys Problem

Input: n square tiles Output: Arrangement of the tiles in a square, where the colors and shapes match up, or "no, its impossible". "Not possible"

How much work is the

 Smiley's Problem?- Upper bound: (O)
$O(n!)$: Try all possible permutations
- Lower bound: (Ω)
$\Omega(n)$: Must at least look at every tile
- Tight bound: (θ)

No one knows!

NP Problems

- Can be solved by just trying all possible answers until we find one that is right
- Easy to quickly check if an answer is right - Checking an answer is in \mathbf{P}
- The smileys problem is in NP

We can easily try n ! different answers We can quickly check if a guess is correct (check all n tiles)

Complexity Classes

Class \mathbf{P} : problems that can be solved in polynomial time ($O\left(n^{k}\right)$ for some constant k): Easy problems like simulating the universe are all in \mathbf{P}.
Class NP: problems that can be solved in polynomial time by a nondeterministic machine: includes all problems in \mathbf{P} and some problems possibly outside \mathbf{P} like the Smileys puzzle

$$
P=N P ?
$$

- Is P different from NP: is there a problem in NP that is not also in P
- If there is one, there are infinitely many
- Is the "hardest" problem in NP also in P - If it is, then every problem in NP is also in P
- No one knows the answer!
- The most famous unsolved problem in computer science and math
- Listed first on Millennium Prize Problems

Quiz Responses

- Partners for PS3
- Only 4 groups worked as partners
- All partner groups got Gold stars
- Only 8 out of 20 non-partner PS got Gold stars
- Your responses:
- Learn more working alone: 7
- Finish faster working alone: 5
- Couldn't find anyone to work with: 2
- Wanted to work with PS1/PS2 partner: 4
- Started too late: 5

Quiz Responses

- How fast:
- Way too fast: 1
- Too fast: 11
- Just about right: 11
- Too slow: 1
- Exam 1:
- Very confident: 1
- Confident: 4

AC's review session Wednesday at 7

- Concerned: 12
- Worried: 5

My office hours:
Tuesday, 3:30-4:30
Thursday, 11:30am-12:30pm
others by email request

- Terrified: 3

13 盆 Computer Science

Other Response

"I decided to skip this problem set, since the lowest grade gets dropped because of conflicts with other courses"
This is not the intent of (from the Syllabus):
"For almost all students. doina the problem sets will b_{r} The main point of the problem sets is to learn G the material! (Note: student who answered as this was the only one to also select "Way Too ys u: Fast" for question 2. If you don't do the PS, is w the course will definitely seem way too fast! I, the weighting that is best for you is used."

Reductions

- Problem A reduces to Problem B if:
- There is a polynomial time function f such that $A(x)=B(f(x))$
- To reduce "3SAT" to "Smiley":
- $A=$ 3SAT
- $B=$ Smiley
- $f=$ tile replacements
\rightarrow
The Real 3SAT Problem (also can be reduced to the Smileys Puzzle)
- If A reduces B that means solving A is no harder than solving B since we can use a solution to B with f to solve A

Propositional Grammar

Sentence ::= Clause
Sentence Rule: Evaluates to value of Clause
Clause ::= Clause ${ }_{1} \vee$ Clause $_{2}$
Or Rule: Evaluates to true if either clause is true
Clause ::= Clause $_{1} \wedge$ Clause $_{2}$
And Rule: Evaluates to true iff both clauses are true

Propositional Grammar

Clause ::= СClause

Not Rule: Evaluates to the opposite value of clause (\neg true \rightarrow false) Clause ::= (Clause)
Group Rule: Evaluates to value of clause. Clause ::= Name
Name Rule: Evaluates to value associated with Name.

The Satisfiability Problem (SAT)

- Input: a sentence in propositional grammar
- Output: Either a mapping from names to values that satisfies the input sentence or no way (meaning there is no possible assignment that satisfies the input sentence)

Proposition Example

Sentence ::= Clause
Clause $::=$ Clause $_{1} \vee$ Clause $_{2}$ Clause $::=$ Clause $_{1} \wedge$ Clause $_{2} \quad($ and $)$ Clause $::=\neg$ Clause \quad (not) Clause ::= (Clause)
Clause ::= Name
$a \vee(b \wedge c) \vee \neg \mathrm{b} \wedge \mathrm{c}$

The 3SAT Problem

- Input: a sentence in propositional grammar, where each clause is a disjunction of 3 names which may be negated.
- Output: Either a mapping from names to values that satisfies the input sentence or no way (meaning there is no possible assignment that satisfies the input sentence)
CS150 Fall 2005: Lecture 15: P vs NP 26 Computer Science

3SAT / SAT

Is 3SAT easier or harder than SAT?

It is definitely not harder than SAT, since all 3SAT problems are also SAT problems. Some SAT problems are not 3SAT problems.

Charge

- Wednesday's class: recap in context of everything so far
- Friday: how Lorenz was really broken
- AC's exam review is Wednesday, 7pm

