
1

David Evans
http://www.cs.virginia.edu/evans

Class 16:
NP-Completeness

/
The Story so Far

CS150: Computer Science

University of Virginia

Computer Science
2CS150 Fall 2005: Lecture 16: NP Completeness

Menu

• 3SAT

• Complexity class NP-Complete

• The Story so Far

• Some NP-Complete Problems

3CS150 Fall 2005: Lecture 16: NP Completeness

Problem Classes if P ≠ NP:

P

NP

Sorting:

Θ(n log n)

Simulating

Universe: O(n3)

Smileys:

O(n!) and Ω(n)

Find Best: Θ(n)

Θ(n)

How many problems
are in the Θ(n) class?

How many problems
are in P but not
in the Θ(n) class?

How many problems
are in NP but not
in P?

infinite

infinite

infinite

4CS150 Fall 2005: Lecture 16: NP Completeness

Problem Classes if P = NP:

P

Sorting:

Θ(n log n)

Simulating

Universe: O(n3)

Smileys:

ΘΘΘΘ(nk)

Find Best: Θ(n)

Θ(n)

How many problems
are in the Θ(n) class?

How many problems
are in P but not
in the Θ(n) class?

How many problems
are in NP but not
in P?

infinite

0

infinite

5CS150 Fall 2005: Lecture 16: NP Completeness

The 3SAT Problem
• Input: a sentence in propositional
grammar, where each clause is a
disjunction of 3 names which may be
negated.

• Output: Either a mapping from names
to values that satisfies the input
sentence or no way (meaning there
is no possible assignment that satisfies
the input sentence)

6CS150 Fall 2005: Lecture 16: NP Completeness

3SAT Example

3SAT ((a ∨ b ∨ ¬ c)

∧ (¬a ∨ ¬ b ∨ d)

∧ (¬a ∨ b ∨ ¬ d)

∧ (b ∨ ¬ c ∨ d))

→ { a: true, b: false, c: false, d: false}

Sentence ::= Clause

Clause ::= Clause1 ∨ Clause2 (or)

Clause ::= Clause1 ∧ Clause2 (and)

Clause ::= ¬Clause (not)

Clause ::= (Clause)

Clause ::= Name

2

7CS150 Fall 2005: Lecture 16: NP Completeness

3SAT → Smiley

• Like 3/stone/apple/tower puzzle, we
can convert every 3SAT problem into
a Smiley Puzzle problem!

• Transformation is more complicated,
but still polynomial time.

• So, if we have a fast (P) solution to
Smiley Puzzle, we have a fast solution
to 3SAT also!

8CS150 Fall 2005: Lecture 16: NP Completeness

NP Complete

• Cook and Levin proved that 3SAT was NP-
Complete (1971) (Take CS660 to see how)

• A problem is NP-complete if it is as hard
as the hardest problem in NP

• If 3SAT can be transformed into a
different problem in polynomial time, than
that problem must also be NP-complete.

• Either all NP-complete problems are
tractable (in P) or none of them are!

9CS150 Fall 2005: Lecture 16: NP Completeness

Problem Classes if P ≠ NP:

P

Sorting:

Θ(n log n)

Simulating

Universe: O(n3)

Smileys

Find Best: Θ(n)

Θ(n)

How many problems
are in the Θ(n) class?

How many problems
are in P but not
in the Θ(n) class?

How many problems
are in NP but not
in P?

infinite

infinite

infinite

NP

3SAT

NP-Complete

Note the NP-
Complete

class is a ring
– others are
circles

10CS150 Fall 2005: Lecture 16: NP Completeness

Quiz Answers

• What would we need to do to prove a
problem is O (n4)?

• What would we need to do to prove a
problem is Ω (n4)?

Find a procedure that solves the problem that is Ο(n4).

Prove that there is no procedure that solves the problem that
is faster than Θ(n4).

11CS150 Fall 2005: Lecture 16: NP Completeness

Quiz Responses:
What is Computer Science?

Remembered (or almost remembered first class):

Study of "how to" knowledge, or whatever the fancy name for that is, The

imperative study of procedures and language (I'm trying to remember what
that definition was on the first day), "How to" do things; instead of declarative

statements, talk about how to do things, I know we hade a specific definition

in the beginning of the year but I forget it…I would say that computer science
is a science/study of methods of manipulating data and information, the

study of imperative knowledge; It doesn't need to have a computer and it's

not a science, it doesn't deal with real things, instead numbers and data
manipulations and problem solving; a liberal art, an innovative perspective

on information; Study of imperative knowledge. Study of different types of
problems and how to solve them. It's more of a liberal arts major than

engineering.; liberal art! Learning about languages.; CS is not computer

engineering, and its not science. Nevertheless, CS used sciences to prove
computer problems.

12CS150 Fall 2005: Lecture 16: NP Completeness

Quiz Responses:
What is Computer Science?

Problem solving (logic, language):

A way of thinking about computers and programs. A systematic way of
creating and understanding how programs work, thinking differently, logically
to how the computer language functions, It seems to be to theorize on how

to systematically solve problems in a functional language, the study of logic

and programs that can be understood by computers; Study of logics and
way to solve problems; The study of using systems and algorithms to solve

problems.; study of languages used to create intelligent computer
procedures to solve usually huge or complex problems involving data ?!; the

science of computers? Solving problems with computers; The study and use

of languages to improve technology and program computers; CS is the art of

getting a computer to do what you want through a common language.

3

13CS150 Fall 2005: Lecture 16: NP Completeness

Quiz Responses:
What is Computer Science?

Amusing:
Computer Science is a great way to find new world.

The bane of my existence.

14CS150 Fall 2005: Lecture 16: NP Completeness

Computer Science

• (Expanded) Definition from Class 1:

– Study of information processes

• How to describe information processes by defining
procedures

• How to predict properties about information
processes

• How to elegantly and efficiently implement
information processes in hardware and software

What have we spent most of our time on so far?

15CS150 Fall 2005: Lecture 16: NP Completeness

Where we’ve been,
Where we’re going

16CS150 Fall 2005: Lecture 16: NP Completeness

Computer Science: CS150 so far
• How to describe information processes by defining
procedures

– Programming with procedures, lists, recursion

– Class 2, 4, 5, 6, 7, 8, 9, 10, 11, 12

• How to predict properties about information
processes

– Measuring work, Θ, Ο, Ω, complexity classes

– Class 9, 10, 11, 12, 13, 14, 15, 16

• How to elegantly and efficiently implement
information processes in hardware and software

– Class 3 (rules of evaluation)

17CS150 Fall 2005: Lecture 16: NP Completeness

CS150 upcoming
• How to describe information processes by defining
procedures

– Programming with mutation, objects, databases,
networks

• How to predict properties about information
processes

– What are we counting when we measure work?

– Are there problems which can’t be solved by procedures?

• How to elegantly and efficiently implement
information processes in hardware and software

– How to implement a Scheme interpreter

– Not much in CS150 on hardware (see CS230 and CS333)

18CS150 Fall 2005: Lecture 16: NP Completeness

Famous Computer Scientists

• Ada – first computer scientist

– She’s in the course name!

• Grace Hopper – first compiler

– First “bug”, Navy ship, David Letterman nano

• John Backus – BNF, Fortran

– UVa dropout

• Tony Hoare – Quicksort

4

19CS150 Fall 2005: Lecture 16: NP Completeness

Famous Computer Scientists

• Bill Gates (?)

– Didn’t invent Windows interface, word
processor, PC, etc. (mostly invented by Doug
Englebart and XEROX Parc)

– Business notion that people would pay for
software for PCs

– Implemented a BASIC interpreter (but didn’t
invent BASIC)

20CS150 Fall 2005: Lecture 16: NP Completeness

NP Complete Problems

21CS150 Fall 2005: Lecture 16: NP Completeness

NP-Complete Problems
• Easy way to solve by trying all possible guesses

• If given the “yes” answer, quick (in P) way to
check if it is right

– Solution to puzzle (see if it looks right)

– Assignments of values to names (evaluate logical
proposition in linear time)

• If given the “no” answer, no quick way to check if
it is right

– No solution (can’t tell there isn’t one)

– No way (can’t tell there isn’t one)

22CS150 Fall 2005: Lecture 16: NP Completeness

Traveling Salesperson Problem
– Input: a graph of cities and roads with
distance connecting them and a
minimum total distant

–Output: either a path that visits each
with a cost less than the minimum, or
“no”.

• If given a path, easy to check if it
visits every city with less than
minimum distance traveled

23CS150 Fall 2005: Lecture 16: NP Completeness

Graph (Map) Coloring Problem

– Input: a graph of nodes with edges
connecting them and a minimum number
of colors

–Output: either a coloring of the nodes
such that no connected nodes have the
same color, or “no”.

If given a coloring, easy to check if it
no connected nodes have the same
color, and the number of colors used.

24CS150 Fall 2005: Lecture 16: NP Completeness

Minesweeper Consistency Problem

– Input: a position of n

squares in the game

Minesweeper

–Output: either a

assignment of bombs to

squares, or “no”.

• If given a bomb assignment, easy to
check if it is consistent.

5

25CS150 Fall 2005: Lecture 16: NP Completeness

Pegboard Problem

26CS150 Fall 2005: Lecture 16: NP Completeness

Pegboard Problem
- Input: a configuration of n pegs on a

cracker barrel style pegboard

- Output: if there is a sequence of jumps
that leaves a single peg, output that
sequence of jumps. Otherwise, output
false.

If given the sequence of jumps, easy (O(n))
to check it is correct. If not, hard to know if

there is a solution.

27CS150 Fall 2005: Lecture 16: NP Completeness

Drug Discovery Problem
– Input: a set of proteins,
a desired 3D shape

–Output: a sequence of
proteins that produces
the shape (or
impossible)

Note: US Drug sales = $200B/year

If given a sequence, easy (not really) to
check if sequence has the right shape.

Caffeine

28CS150 Fall 2005: Lecture 16: NP Completeness

Is it ever useful to be confident
that a problem is hard?

Hint: PS4

29CS150 Fall 2005: Lecture 16: NP Completeness

Charge

• AC’s exam review is tonight at 7pm

• Friday:

– Exam 1 out (will be posted on web also)

– How Lorenz was really broken

