

Menu

- Questions from Lecture 1 Notes
- Formal Systems
- MIU-system
- Languages
- English
- Scheme

Menu		
- Questions from Lecture 1 Notes		
- Formal Systems		
- MIU-syystem		
- Languages		
- English		
- Scheme		

Are there any non-recursive natural languages? What would happen to a society that spoke one?

Not covered in Class 1...after today you should be able to answer this.

Formal Systems

- Set of symbols
- Primitives
- Set of rules for manipulating symbols
- Hofstadter: Rules of Production, Rules of Inference
- Also: Rules of Combination

cSi50 Fal 2005: Lecture 2: Language	6	侖 Computer Science

The MIU System

- Symbols: M, I, U
- Rules of Production:
- Rule I: If you have a string ending in I, you can add a U at the end.
- Rule II: Suppose you have Mx. Then you may add Mxx to your collection.
- Rule III: If III occurs in one of the strings in your collection you may make a new string with U in place of III.
- Rule IV: If UU occurs inside one of your strings, you can drop it.
CS150 Fall 2005: Lecture 2: Language 7 Computer Science

MIU System Example

Start with MUI, produce MIU

Rules of Production:
Rule I: If you have a string ending in I, you can add a U at the end.
Rule II: Suppose you have Mx. Then you may add Mxx to your collection.
Rule III: If III occurs in one of the strings in your collection you may make a new string with U in place of III.
Rule IV: If UU occurs inside one of your strings, you can drop it.

CS150 Fall 2005: Lecture 2: Language 8

Survey Summary

- 26 Responses
- Years: 6 First, 1 Second, 9 Third, 8 Fourth
- Majors: 10 Cognitive Science, 4 Biology, 3 Undecided, 2 Economics, Art History, Chemistry, Electrical Engineering, Foreign Affairs, Mathematics, Neuroscience, Psychology, Sociology
- Previous computing: 15 None, 5 A Little, 6 Lots
- Full survey responses will be posted over the weekend
CS150 Fall 2005: Lecture 2: Language 10 Computer Science

What is a language?

Webster:

A systematic means of communicating ideas of feelings by the use of conventionalized signs, sounds, gestures, or marks having understood meanings.

Linguist's Definition
 (Charles Yang)

A description of pairs (S, M), where S stands for sound, or any kind of surface forms, and M stands for meaning.

A theory of language must specify the properties of S and M, and how they are related.

Languages and Formal Systems

What is the difference between a formal system and a language?

With a language, the surface forms have meaning.

Caveat: computer scientists often use language to mean just a set of surface forms.

CS150 Fall 2005: Lecture 2: Language 14

> What is the longest word in the English language?

According to Guinness

floccipoccinihilipilification the act of rendering useless

What are languages made of?

- Primitives (almost all languages have these)
-The simplest surface forms with meaning
- Means of Combination (all languages have these)
- Like Rules of Production for Formal Systems
- Ways to make new surface forms from ones you already have
- Means of Abstraction (all powerful languages have these)
- Ways to use simple surface forms to represent complicated ones
CS150 Fall 2005: Lecture 2: Language 15 Computer Science

Language is Recursive

No matter what word you think is the longest word, I can always make up a longer one!
word ::= anti-word

If you have a word, you can always make up a new word by adding anti in front. Since the result is a word, you can make a longer new word by adding anti- in front again.

Recursive Definitions

Allow us to express infinitely many things starting with a few.

This is powerful!
We will see lots of examples in this course.
CS150 Fall 2005: Lecture 2: Language 21 Computer Science

Does English have these?

- Means of abstraction
- Pronouns: she, he, it, they, which, etc.
- Confusing since they don't always mean the same thing, it depends on where they are used.

The "these" in the slide title is an abstraction for the three elements of language introduced 2 slides ago.
The "they" in the confusing sentence is an abstraction for pronouns.

Recursive Definitions

- We can define things in terms of themselves
- Recursive definitions are different from circular definitions: they eventually end with something real
word ::= anti-word
word ::= floccipoccinihilipilification
CS150 Fall 2005: Lecture 2: Language 20 Computer Science

[^0]| How should we describe languages? |
| :---: |
| Detour: |
| History of Computer Programming |
| |

ENIAC: Electronic Numerical Integrator and Computer

- Early WWII computer
- But not the world's first (PS4)
- Built to calculate bombing tables
Memory size:

twenty 10 decimal digit accumulators $=664$ bits ENIAC (1946): $1 / 2 \mathrm{~mm}$ Apollo Guidance Computer (1969): 1 inch
You: 2.3 miles
CS150 Fall 2005: Lecture 2: Language 25

Directions for Getting 6

1. Choose any regular accumulator (ie. Accumulator \#9).
2. Direct the Initiating Pulse to terminal 51 .
3. The initiating pulse is produced by the initiating unit's Io terminal each time the Eniac is started. This terminal is usually, by default, plugged into Program Line 1-1 (described later). Simply connect a program cable from Program Line 1-1 to terminal $5 i$ on this Accumulator.
4. Set the Repeat Switch for Program Control 5 to 6.
5. Set the Operation Switch for Program Control 5 to
6. Set the Clear-Correct switch to C.
7. Turn on and clear the Eniac.
8. Normally, when the Eniac is first started, a clearing process is begun. If the Eniac had been previously started, or if there are random neons illuminated in the accumulators, the "Initial Clear" button of the Initiating device can be pressed.
9. Press the " Initiating Pulse Switch" that is located on the Initiating device.
10.Stand back.
CS150 Fall 2005: Lecture 2: Language 26 Computer Science

John Backus

- Chemistry major at UVA (entered 1943)
- Flunked out after second semester
- Joined IBM as programmer in 1950
- Developed Fortran, first commercially successful programming language and compiler
CS150 Fall 2005: Lecture 2: Language 31 Computer Science

Describing Languages

- Fortran language was described using English
- Imprecise
- Verbose, lots to read
- Ad hoc

DO $10 \mathrm{I}=1.10$
Assigns 1.10 to the variable DO10I
DO $10 \mathrm{I}=1,10$
Loops for $I=1$ to 10
(Often incorrectly blamed for loss of Mariner-I)

- Wanted a more precise way of describing a language
CS150 Fall 2005: Lecture 2: Language 33 Computer Science

BNF Example

Sentence ::= NP Verb
NP ::= Noun
Noun ::= Dave
What are the
Nom : Scher
Noun ::= Scheme
Verb ::= rocks
Verb $::=$ sucks terminals?

Dave, Scheme, rocks, sucks
How many different things can we express with this language?

4 , but only 2 are true
CS150 Fall 2005: Lecture 2: Language 35 Computer Science

IBM 704 Fortran manual, 1956

Backus Naur Form

non-terminal ::= replacement
We can replace non-terminal with replacement
$A::=B$ means anywhere you
have an A, you can replace it
with a B.
Some replacements are terminak: a terminal is something that never appears on the left side of a rule.

BNF Example

Sentence ::= NP Verb
$N P::=$ Noun
$N P::=$ Noun and $N P$
Noun $::=$ Dave
Noun ::= Scheme
Verb ::= rocks
Verb ::= sucks

How many different things can we express with this language?

Infinitely many!
Recursion is powerful.

Charge

- Lab Hours: posted on website
-Take advantage of them!
-If you can, follow the Wizards to lab now
- Problem Set 1: due Wednesday
- Don't floccipoccinihilipilificate
CS150 Fall 2005: Lecture 2: Language 38 Computer Science

[^0]: Does English have these?

 - Primitives
 -Words (?)
 - e.g., "antifloccipoccinihililiilification" - not a primitive
 - Morphemes - smallest units of meaning
 - e.g., anti- ("opposite")
 - Means of combination
 - e.g., Sentence ::= Subject Verb Object
 - Precise rules, but not the ones you learned in grammar school

 Ending a sentence with a preposition is something up with which we will not put. Winston Churchill
 CS150 Fall 2005: Lecture 2: Language 22 Computer Science

