
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Class 24:
Computability

Halting Problems Hockey Team Logo

2CS150 Fall 2005: Lecture 24: Computability

Menu
• Review:

– Gödel’s Theorem

– Proof in Axiomatic Systems

• Computability:

Are there some problems that it is
impossible to write a program to
solve?

3CS150 Fall 2005: Lecture 24: Computability

Gödel’s Proof
G: This statement of number theory
does not have any proof in the system
of PM.

If G were provable, then PM would be
inconsistent.

If G is unprovable, then PM would be
incomplete.

PM cannot be complete and consistent!

4CS150 Fall 2005: Lecture 24: Computability

What does it mean for an axiomatic
system to be complete and consistent?

Derives all true
statements, and no false
statements starting from a
finite number of axioms
and following mechanical

inference rules.

5CS150 Fall 2005: Lecture 24: Computability

What does it mean for an axiomatic
system to be complete and consistent?

It means the axiomatic system is
weak.

Its is so weak, it cannot express
“This statement has no proof.”

6CS150 Fall 2005: Lecture 24: Computability

Why is an Inconsistent Axiomatic
System less useful than an

Incomplete Axiomatic System?

2

7CS150 Fall 2005: Lecture 24: Computability

Inconsistent Axiomatic System

Derives

all true

statements, and some false

statements starting from a

finite number of axioms

and following mechanical

inference rules.
some false

statementsOnce you can prove one false statement,
everything can be proven! false ⇒ anything

8CS150 Fall 2005: Lecture 24: Computability

Proof

• A proof of S in an axiomatic system is
a sequence of strings, T0, T1, …, Tn

where:
–The first string is the axioms

–For all i from 1 to n, T
n
is the result of

applying one of the inference rules to T
n-1

– T
n
is S

• How much work is it to check a
proof?

9CS150 Fall 2005: Lecture 24: Computability

Proof Checking Problem

• Input: an axiomatic system (a set of
axioms and inference rules), a statement
S, and a proof P containing n steps of S

• Output:

true if P is a valid proof of S

false otherwise

How much work is a proof-checking procedure?

We can write a proof-checking procedure that is θ (n)

10CS150 Fall 2005: Lecture 24: Computability

Finite-Length Proof Finding Problem

• Input: an axiomatic system (a set of
axioms and inference rules), a statement
S, n (the maximum number of proof steps)

• Output: A valid proof of S with no more
then n steps if there is one. If there is no
proof of S with <= n steps, unprovable.

How
much
work?

At worst, we can try all possible proofs:
r inference rules, 0 - n steps ~ rn possible proofs

Checking each proof is θ (n)

So, there is a procedure that is θ (nrn)

but, it might not be the best one.

11CS150 Fall 2005: Lecture 24: Computability

Proof Finding Problem

• Input: an axiomatic system, a statement S

• Output: If S is true, output a valid proof.
If S is not true, output false.

How much work?

It is impossible!

“It might take infinite work.”

Gödel’s theorem says it cannot be done.

12CS150 Fall 2005: Lecture 24: Computability

Computability

3

13CS150 Fall 2005: Lecture 24: Computability

Algorithms

• What’s an algorithm?

A procedure that always terminates.

• What’s a procedure?

A precise (mechanizable) description of a
process.

14CS150 Fall 2005: Lecture 24: Computability

Computability
• Is there an algorithm that solves a problem?

• Decidable (computable) problems:

– There is an algorithm that solves the problem.

– Make a photomosaic, sorting, drug discovery,
winning chess (it doesn’t mean we know the
algorithm, but there is one)

• Undecidable problems:

– There is no algorithm that solves the problem.

There might be a procedure, but it

doesn’t always terminate.

15CS150 Fall 2005: Lecture 24: Computability

Are there any
undecidable problems?

The Proof-Finding Problem:

• Input: an axiomatic system, a
statement S

• Output: If S is true, output a valid
proof. If S is not true, output false.

16CS150 Fall 2005: Lecture 24: Computability

Any others?

How would you prove a problem is undecidable?

Hint: how did we prove 3-SAT was NP-
Complete (once we knew Smiley Puzzle was?

17CS150 Fall 2005: Lecture 24: Computability

Undecidable Problems

• We can prove a problem is undecidable by
showing it is at least as hard as the proof-
finding problem

• Here’s a famous one:

Halting Problem

Input: a procedure P (described by a Scheme
program) and its input I

Output: true if executing P on I halts (finishes
execution), false otherwise.

18CS150 Fall 2005: Lecture 24: Computability

Alan Turing (1912-1954)
• Codebreaker at Bletchley Park

– Broke Enigma Cipher

– Perhaps more important than Lorenz
• Published On Computable Numbers … (1936)

– Introduced the Halting Problem

– Formal model of computation

(now known as “Turing Machine”)

• After the war: convicted of homosexuality
(then a crime in Britain), committed suicide
eating cyanide apple 5 years after

Gödel’s proof!

4

19CS150 Fall 2005: Lecture 24: Computability

Halting Problem

Define a procedure halts? that takes a
procedure and an input evaluates to #t if
the procedure would terminate on that
input, and to #f if would not terminate.

(define (halts? procedure input) …)

20CS150 Fall 2005: Lecture 24: Computability

Examples
> (halts? ‘(lambda (x) (+ x x)) 3)
#t
> (halts? ‘(lambda (x)

(define (f x) (f x)) (f x))
27)

#f

21CS150 Fall 2005: Lecture 24: Computability

Halting Examples
> (halts? `(lambda (x)

(define (fact n)
(if (= n 1) 1 (* n (fact (- n 1)))))

(fact x))
7)

#t
> (halts? `(lambda (x)

(define (fact n)
(if (= n 1) 1 (* n (fact (- n 1)))))

(fact x))
0)

#f

22CS150 Fall 2005: Lecture 24: Computability

Can we define halts? ?

• We could try for a really long time, get
something to work for simple examples,
but could we solve the problem – make it
work for all possible inputs?

• Could we compute find-proof if we had
halts?

23CS150 Fall 2005: Lecture 24: Computability

find-proof
(define (find-proof S axioms rules)

;; If S is provable, evaluates to a proof of S.

;; Otherwise, evaluates to #f.

(if (halts? find-proof-exhaustive

S axioms rules))

(find-proof-exhaustive S axioms rules)

#f))

Where (find-proof-exhaustive S axioms rules) is a procedure that tries all

possible proofs starting from the axioms that evaluates to a proof if it
finds one, and keeps working if it doesn’t.

I cheated a little here –

we only know we can’t

do this for “true”.

24CS150 Fall 2005: Lecture 24: Computability

Another Informal Proof

(define (contradict-halts x)
(if (halts? contradict-halts null)

(loop-forever)
#t))

If contradict-halts halts, the if test is true and

it evaluates to (loop-forever) - it doesn’t halt!

If contradict-halts doesn’t halt, the if test if false,

and it evaluates to #t. It halts!

5

25CS150 Fall 2005: Lecture 24: Computability

Reducing Undecidable Problems

• If solving a problem P would allow us to
solve the halting problem, then P is
undecidable – there is no solution to P,
since we have proved there is no solution
to the halting problem!

• There are lots of important problems like
this

– Friday: why virus scanners will never work
perfectly

26CS150 Fall 2005: Lecture 24: Computability

Charge

• Now (if you can)

–Marc Levoy, Newcomb

South Meeting Room

“Digital Michelangelo”

