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Menu
• Review: 

– Gödel’s Theorem

– Proof in Axiomatic Systems

• Computability:

Are there some problems that it is 
impossible to write a program to 
solve?
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Gödel’s Proof
G: This statement of number theory 
does not have any proof in the system 
of PM.

If G were provable, then PM would be 
inconsistent.

If G is unprovable, then PM would be 
incomplete.

PM cannot be complete and consistent!
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What does it mean for an axiomatic 
system to be complete and consistent?

Derives all true 
statements, and no false 
statements starting from a 
finite number of axioms 
and following mechanical 

inference rules.
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What does it mean for an axiomatic 
system to be complete and consistent?

It means the axiomatic system is 
weak.

Its is so weak, it cannot express 
“This statement has no proof.”
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Why is an Inconsistent Axiomatic 
System less useful than an 

Incomplete Axiomatic System?
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Inconsistent Axiomatic System

Derives 

all true 

statements, and some false 

statements starting from a 

finite number of axioms 

and following mechanical 

inference rules.
some false 

statementsOnce you can prove one false statement,
everything can be proven!  false ⇒ anything
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Proof

• A proof of S in an axiomatic system is 
a sequence of strings, T0, T1, …, Tn

where:
–The first string is the axioms

–For all i from 1 to n, T
n
is the result of 

applying one of the inference rules to T
n-1

– T
n
is S

• How much work is it to check a 
proof?
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Proof Checking Problem

• Input: an axiomatic system (a set of 
axioms and inference rules), a statement 
S, and a proof P containing n steps of S

• Output: 

true if P is a valid proof of S

false otherwise 

How much work is a proof-checking procedure?

We can write a proof-checking procedure that is θ (n)
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Finite-Length Proof Finding Problem

• Input: an axiomatic system (a set of 
axioms and inference rules), a statement 
S, n (the maximum number of proof steps) 

• Output: A valid proof of S with no more 
then n steps if there is one.  If there is no 
proof of S with <= n steps, unprovable.

How 
much 
work?

At worst, we can try all possible proofs:
r inference rules, 0 - n steps ~ rn possible proofs

Checking each proof is θ (n)

So, there is a procedure that is θ (nrn) 

but, it might not be the best one.
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Proof Finding Problem

• Input: an axiomatic system, a statement S

• Output: If S is true, output a valid proof.  
If S is not true, output false.

How much work?

It is impossible!   

“It might take infinite work.”

Gödel’s theorem says it cannot be done.
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Computability



3

13CS150 Fall 2005: Lecture 24: Computability

Algorithms

• What’s an algorithm?

A procedure that always terminates.

• What’s a procedure?

A precise (mechanizable) description of a 
process.
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Computability
• Is there an algorithm that solves a problem?

• Decidable (computable) problems:

– There is an algorithm that solves the problem.

– Make a photomosaic, sorting, drug discovery, 
winning chess (it doesn’t mean we know the 
algorithm, but there is one)

• Undecidable problems:

– There is no algorithm that solves the problem.

There might be a procedure, but it 

doesn’t always terminate.

15CS150 Fall 2005: Lecture 24: Computability

Are there any 
undecidable problems?

The Proof-Finding Problem:

• Input: an axiomatic system, a 
statement S

• Output: If S is true, output a valid 
proof.  If S is not true, output false.
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Any others?

How would you prove a problem is undecidable?

Hint: how did we prove 3-SAT was NP-
Complete (once we knew Smiley Puzzle was?
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Undecidable Problems

• We can prove a problem is undecidable by 
showing it is at least as hard as the proof-
finding problem

• Here’s a famous one:

Halting Problem

Input: a procedure P (described by a Scheme 
program) and its input I

Output: true if executing P on I halts (finishes 
execution), false otherwise.
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Alan Turing (1912-1954)
• Codebreaker at Bletchley Park

– Broke Enigma Cipher

– Perhaps more important than Lorenz
• Published On Computable Numbers … (1936)

– Introduced the Halting Problem

– Formal model of computation 

(now known as “Turing Machine”)

• After the war: convicted of homosexuality 
(then a crime in Britain), committed suicide 
eating cyanide apple 5 years after 

Gödel’s proof!
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Halting Problem

Define a procedure halts? that takes a 
procedure and an input evaluates to #t if 
the procedure would terminate on that 
input, and to #f if would not terminate.

(define (halts? procedure input) … )
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Examples
> (halts? ‘(lambda (x) (+ x x)) 3)
#t
> (halts? ‘(lambda (x)

(define (f x) (f x)) (f x))
27)

#f
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Halting Examples
> (halts? `(lambda (x) 

(define (fact n)
(if (= n 1) 1 (* n (fact (- n 1)))))

(fact x))
7)

#t
> (halts? `(lambda (x) 

(define (fact n)
(if (= n 1) 1 (* n (fact (- n 1)))))

(fact x))
0)

#f
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Can we define halts? ?

• We could try for a really long time, get 
something to work for simple examples, 
but could we solve the problem – make it 
work for all possible inputs?

• Could we compute find-proof if we had 
halts?
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find-proof
(define (find-proof S axioms rules)

;; If S is provable, evaluates to a proof of S.

;; Otherwise, evaluates to #f.

(if (halts? find-proof-exhaustive 

S axioms rules))

(find-proof-exhaustive S axioms rules)

#f))

Where (find-proof-exhaustive S axioms rules) is a procedure that tries all 

possible proofs starting from the axioms that evaluates to a proof if it 
finds one, and keeps working if it doesn’t.

I cheated a little here –

we only know we can’t

do this for “true”.
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Another Informal Proof

(define (contradict-halts x)
(if (halts? contradict-halts null)

(loop-forever)
#t))

If contradict-halts halts, the if test is true and

it evaluates to (loop-forever) - it doesn’t halt!

If contradict-halts doesn’t halt, the if test if false,

and it evaluates to #t.  It halts!
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Reducing Undecidable Problems

• If solving a problem P would allow us to 
solve the halting problem, then P is  
undecidable – there is no solution to P, 
since we have proved there is no solution 
to the halting problem!

• There are lots of important problems like 
this

– Friday: why virus scanners will never work 
perfectly
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Charge

• Now (if you can)

–Marc Levoy, Newcomb 

South Meeting Room

“Digital Michelangelo”


