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How convincing is our 
Halting Problem proof?

(define (contradict-halts x)
(if (halts? contradict-halts null)

(loop-forever)
#t))

contradicts-halts cannot exist.  Everything we 
used to make it except halts? does exist, 
therefore halts? cannot exist.

This “proof” assumes Scheme exists and is consistent!
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DrScheme

• Is DrScheme a proof that Scheme exists?

From Lecture 13...
> (time (permute-sort <= (rand-int-list 7)))
cpu time: 261 real time: 260 gc time: 0
(6 7 35 47 79 82 84)
> (time (permute-sort <= (rand-int-list 8)))
cpu time: 3585 real time: 3586 gc time: 0
(4 10 40 50 50 58 69 84)
> (time (permute-sort <= (rand-int-list 9)))

Crashes!
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Solutions

• Option 1: Prove “Idealized Scheme” does 
exist

– Show that we could implement all the 
evaluation rules

• Option 2: Find some simpler computing 
model

– Define it precisely

– Show that “contradict-halts” can be defined in 
this model
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Modeling Computation

• For a more convincing proof, we need a 
more precise (but simple) model of what a 
computer can do

• Another reason we need a model:

Does complexity really make sense 
without this? (how do we know what a 
“step” is? are they the same for all 
computers?)
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How should we model a Computer?

Apollo Guidance 
Computer (1969)

Colossus (1944)

IBM 5100 (1975)

Cray-1 (1976)

Turing invented the 
model we’ll use 
today in 1936.  
What “computer”
was he modeling?
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Turing’s “Computer”

“Computing is normally done by writing certain symbols on paper. We 

may suppose this paper is divided into squares like a child’s arithmetic 
book.”

Alan Turing, On computable numbers, with an application to the 
Entscheidungsproblem, 1936”
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Modeling Computers

• Input

– Without it, we can’t describe a problem

• Output

– Without it, we can’t get an answer

• Processing

– Need some way of getting from the input to 
the output

• Memory

– Need to keep track of what we are doing

9CS150 Fall 2005: Lecture 25: Undecidable Problems

Modeling Input

Engelbart’s mouse and keypad

Punch Cards

Altair BASIC Paper Tape, 1976
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Simplest Input

• Non-interactive: like punch cards and 
paper tape

• One-dimensional: just a single tape of 
values, pointer to one square on tape

0 0 1 1 0 0 1 0 0 0

How long should the tape be?

Infinitely long!  We are modeling a computer, not 
building one.  Our model should not have silly 
practical limitations (like a real computer does).
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Modeling Output

• Blinking lights are 
cool, but hard to 
model

• Output is what is 
written on the 
tape at the end of 
a computation

Connection Machine CM-5, 1993
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Modeling Processing
• Evaluation Rules

– Given an input on our tape, how do we 
evaluate to produce the output

• What do we need:

– Read what is on the tape at the current 
square

– Move the tape one square in either direction

– Write into the current square

0 0 1 1 0 0 1 0 0 0

Is that enough to model a computer?
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Modeling Processing

• Read, write and move is not enough

• We also need to keep track of what we 
are doing:

– How do we know whether to read, write or 
move at each step?

– How do we know when we’re done?

• What do we need for this?
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Finite State Machines

1Start 2

HALT

10

1
#

0
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Hmmm…maybe we don’t need 
those infinite tapes after all?

1Start 2

HALT

(not a 
paren

)
#

not a 
paren

)

ERROR

What if the
next input symbol
is ( in state 2?
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How many states do we need?

1Start 2

HALT

(not a 
paren

)
#

not a 
paren

)

ERROR

3

not a 
paren

(

)

4
(

)

not a 
paren

(
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Finite State Machine

• There are lots of things we can’t 
compute with only a finite number of 
states

• Solutions:

– Infinite State Machine

• Hard to describe and draw

–Add an infinite tape to the Finite State 
Machine
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Turing’s Explanation

“We have said that the 
computable numbers are 
those whose decimals are 
calculable by finite 
means. ... For the present 
I shall only say that the 
justification lies in the fact 
that the human memory 
is necessarily limited.”
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FSM + Infinite Tape
• Start: 

– FSM in Start State

– Input on Infinite Tape

– Pointer to start of input

• Move:

– Read one input symbol from tape

– Follow transition rule from current state

• To next state

• Write symbol on tape, and move L or R one square

• Finish:

– Transition to halt state
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Matching Parentheses

• Find the leftmost )

– If you don’t find one, the parentheses match, 
write a 1 at the tape head and halt.

• Replace it with an X

• Look left for the first (

– If you find it, replace it with an X (they 
matched)

– If you don’t find it, the parentheses didn’t 
match – end write a 0 at the tape head and halt
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Matching Parentheses

1: look 
for )Start

HALT

Input: )
Write: X
Move: L

), X, L

2: look 
for (

X, X, R

X, X, L

(, X, R
#, 0, ##, 1, #

(, (, R

Will this report the

correct result for (()?
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Matching Parentheses

1
Start

HALT

), X, L

2: look 
for (

(, (, R

(, X, R

#, 0, ##, 1, #

X, X, L

X, X, R

#, #, L

3: look 
for (X, X, L

#, 1, #
(, 0, #
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Turing Machine (1936)

z z z z z z z z z z z z z z z zz z z z

TuringMachine ::= < Alphabet, Tape, FSM >

Alphabet ::= { Symbol* }

Tape ::= < LeftSide, Current, RightSide >
OneSquare ::= Symbol | #
Current ::= OneSquare
LeftSide ::= [ Square* ]
RightSide ::= [ Square* ]

Everything to left of LeftSide is #.

Everything to right of RightSide is #.

1

Start

HALT

), X, L

2: look 
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine
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Charge

• Wednesday:

– Universal Turing Machines

• Friday:

– Lambda Calculus (another simple model of 
computation, and the basis for Scheme)

• Monday: PS6 Due


