
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Class 26:
Modeling
Computing

2CS150 Fall 2005: Lecture 25: Undecidable Problems

How convincing is our
Halting Problem proof?

(define (contradict-halts x)
(if (halts? contradict-halts null)

(loop-forever)
#t))

contradicts-halts cannot exist. Everything we
used to make it except halts? does exist,
therefore halts? cannot exist.

This “proof” assumes Scheme exists and is consistent!

3CS150 Fall 2005: Lecture 25: Undecidable Problems

DrScheme

• Is DrScheme a proof that Scheme exists?

From Lecture 13...
> (time (permute-sort <= (rand-int-list 7)))
cpu time: 261 real time: 260 gc time: 0
(6 7 35 47 79 82 84)
> (time (permute-sort <= (rand-int-list 8)))
cpu time: 3585 real time: 3586 gc time: 0
(4 10 40 50 50 58 69 84)
> (time (permute-sort <= (rand-int-list 9)))

Crashes!

4CS150 Fall 2005: Lecture 25: Undecidable Problems

Solutions

• Option 1: Prove “Idealized Scheme” does
exist

– Show that we could implement all the
evaluation rules

• Option 2: Find some simpler computing
model

– Define it precisely

– Show that “contradict-halts” can be defined in
this model

5CS150 Fall 2005: Lecture 25: Undecidable Problems

Modeling Computation

• For a more convincing proof, we need a
more precise (but simple) model of what a
computer can do

• Another reason we need a model:

Does complexity really make sense
without this? (how do we know what a
“step” is? are they the same for all
computers?)

6CS150 Fall 2005: Lecture 25: Undecidable Problems

How should we model a Computer?

Apollo Guidance
Computer (1969)

Colossus (1944)

IBM 5100 (1975)

Cray-1 (1976)

Turing invented the
model we’ll use
today in 1936.
What “computer”
was he modeling?

2

7CS150 Fall 2005: Lecture 25: Undecidable Problems

Turing’s “Computer”

“Computing is normally done by writing certain symbols on paper. We

may suppose this paper is divided into squares like a child’s arithmetic
book.”

Alan Turing, On computable numbers, with an application to the
Entscheidungsproblem, 1936”

8CS150 Fall 2005: Lecture 25: Undecidable Problems

Modeling Computers

• Input

– Without it, we can’t describe a problem

• Output

– Without it, we can’t get an answer

• Processing

– Need some way of getting from the input to
the output

• Memory

– Need to keep track of what we are doing

9CS150 Fall 2005: Lecture 25: Undecidable Problems

Modeling Input

Engelbart’s mouse and keypad

Punch Cards

Altair BASIC Paper Tape, 1976

10CS150 Fall 2005: Lecture 25: Undecidable Problems

Simplest Input

• Non-interactive: like punch cards and
paper tape

• One-dimensional: just a single tape of
values, pointer to one square on tape

0 0 1 1 0 0 1 0 0 0

How long should the tape be?

Infinitely long! We are modeling a computer, not
building one. Our model should not have silly
practical limitations (like a real computer does).

11CS150 Fall 2005: Lecture 25: Undecidable Problems

Modeling Output

• Blinking lights are
cool, but hard to
model

• Output is what is
written on the
tape at the end of
a computation

Connection Machine CM-5, 1993

12CS150 Fall 2005: Lecture 25: Undecidable Problems

Modeling Processing
• Evaluation Rules

– Given an input on our tape, how do we
evaluate to produce the output

• What do we need:

– Read what is on the tape at the current
square

– Move the tape one square in either direction

– Write into the current square

0 0 1 1 0 0 1 0 0 0

Is that enough to model a computer?

3

13CS150 Fall 2005: Lecture 25: Undecidable Problems

Modeling Processing

• Read, write and move is not enough

• We also need to keep track of what we
are doing:

– How do we know whether to read, write or
move at each step?

– How do we know when we’re done?

• What do we need for this?

14CS150 Fall 2005: Lecture 25: Undecidable Problems

Finite State Machines

1Start 2

HALT

10

1
#

0

15CS150 Fall 2005: Lecture 25: Undecidable Problems

Hmmm…maybe we don’t need
those infinite tapes after all?

1Start 2

HALT

(not a
paren

)
#

not a
paren

)

ERROR

What if the
next input symbol
is (in state 2?

16CS150 Fall 2005: Lecture 25: Undecidable Problems

How many states do we need?

1Start 2

HALT

(not a
paren

)
#

not a
paren

)

ERROR

3

not a
paren

(

)

4
(

)

not a
paren

(

17CS150 Fall 2005: Lecture 25: Undecidable Problems

Finite State Machine

• There are lots of things we can’t
compute with only a finite number of
states

• Solutions:

– Infinite State Machine

• Hard to describe and draw

–Add an infinite tape to the Finite State
Machine

18CS150 Fall 2005: Lecture 25: Undecidable Problems

Turing’s Explanation

“We have said that the
computable numbers are
those whose decimals are
calculable by finite
means. ... For the present
I shall only say that the
justification lies in the fact
that the human memory
is necessarily limited.”

4

19CS150 Fall 2005: Lecture 25: Undecidable Problems

FSM + Infinite Tape
• Start:

– FSM in Start State

– Input on Infinite Tape

– Pointer to start of input

• Move:

– Read one input symbol from tape

– Follow transition rule from current state

• To next state

• Write symbol on tape, and move L or R one square

• Finish:

– Transition to halt state

20CS150 Fall 2005: Lecture 25: Undecidable Problems

Matching Parentheses

• Find the leftmost)

– If you don’t find one, the parentheses match,
write a 1 at the tape head and halt.

• Replace it with an X

• Look left for the first (

– If you find it, replace it with an X (they
matched)

– If you don’t find it, the parentheses didn’t
match – end write a 0 at the tape head and halt

21CS150 Fall 2005: Lecture 25: Undecidable Problems

Matching Parentheses

1: look
for)Start

HALT

Input:)
Write: X
Move: L

), X, L

2: look
for (

X, X, R

X, X, L

(, X, R
#, 0, ##, 1, #

(, (, R

Will this report the

correct result for (()?

22CS150 Fall 2005: Lecture 25: Undecidable Problems

Matching Parentheses

1
Start

HALT

), X, L

2: look
for (

(, (, R

(, X, R

#, 0, ##, 1, #

X, X, L

X, X, R

#, #, L

3: look
for (X, X, L

#, 1, #
(, 0, #

23CS150 Fall 2005: Lecture 25: Undecidable Problems

Turing Machine (1936)

z z z z z z z z z z z z z z z zz z z z

TuringMachine ::= < Alphabet, Tape, FSM >

Alphabet ::= { Symbol* }

Tape ::= < LeftSide, Current, RightSide >
OneSquare ::= Symbol | #
Current ::= OneSquare
LeftSide ::= [Square*]
RightSide ::= [Square*]

Everything to left of LeftSide is #.

Everything to right of RightSide is #.

1

Start

HALT

), X, L

2: look
for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

24CS150 Fall 2005: Lecture 25: Undecidable Problems

Charge

• Wednesday:

– Universal Turing Machines

• Friday:

– Lambda Calculus (another simple model of
computation, and the basis for Scheme)

• Monday: PS6 Due

