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Turing Machine (1936)

z z z z z z z z z z z z z z z zz z z z

TuringMachine ::= < Alphabet, Tape, FSM >

Alphabet ::= { Symbol* }

Tape ::= < LeftSide, Current, RightSide >
OneSquare ::= Symbol | #
Current ::= OneSquare
LeftSide ::= [ Square* ]
RightSide ::= [ Square* ]

Everything to left of LeftSide is #.

Everything to right of RightSide is #.
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Finite State Machine
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Describing Finite State Machines

TuringMachine ::= < Alphabet, Tape, FSM >
FSM ::= < States, TransitionRules, InitialState, HaltingStates >
States ::= { StateName* }
InitialState ::= StateName must be element of States
HaltingStates ::= { StateName* }all must be elements of States
TransitionRules ::= { TransitionRule* }
TransitionRule ::= 
< StateName,  ;; Current State
OneSquare,  ;; Current square
StateName,  ;; Next State
OneSquare,  ;; Write on tape
Direction >    ;; Move tape

Direction ::= L, R, #

Transition Rule is a procedure:

Inputs: StateName, OneSquare
Outputs: StateName, OneSquare,

Direction
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Example 
Turing 
Machine

TuringMachine ::= < Alphabet, Tape, FSM >
FSM ::= < States, TransitionRules, InitialState, HaltingStates >
Alphabet ::= { (, ), X }

States ::= { 1, 2, HALT }
InitialState ::= 1

HaltingStates ::= { HALT }
TransitionRules ::= { < 1, ), 2, X, L >,

< 1, #, HALT, 1, # >,

< 1, ¬), #, R >,
< 2, (, 1, X, R >,

< 2, #, HALT, 0, # >,

< 2,  ¬), #, L >,}
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Enumerating Turing Machines

• Now that we’ve decided how to describe 
Turing Machines, we can number them

• TM-5023582376 = balancing parens

• TM-57239683 = even number of 1s

• TM-3523796834721038296738259873 = Photomosaic Program

• TM-3672349872381692309875823987609823712347823 = WindowsXP
Not the real 

numbers – they 
would be much 

bigger!
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Universal Turing Machine

Universal
Turing
Machine
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Can we make a Universal Turing Machine?
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Yes!

• People have designed Universal Turing 
Machines with

– 4 symbols, 7 states (Marvin Minsky)

– 4 symbols, 5 states 

– 2 symbols,  22 states

– 18 symbols, 2 states

– 2 states, 5 symbols (Stephen Wolfram)

• No one knows what the smallest possible 
UTM is
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Manchester Illuminated Universal Turing Machine, #9 

from http://www.verostko.com/manchester/manchester.html
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Church-Turing Thesis
• Any mechanical computation can be 
performed by a Turing Machine

• There is a TM-n corresponding to every 
decidable problem

• We can simulate one step on any “normal”
(classical mechanics) computer with a 
constant number of steps on a TM:

– If a problem is in P on a TM, it is in P on an iMac, 
CM5, Cray, Palm, etc.

– But maybe not a quantum computer! (later class)
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Universal Language

• Is Scheme as powerful as a Universal 
Turing Machine?

• Is a Universal Turing Machine as powerful 
as Scheme?
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Complexity in Scheme
• Special Forms

– if, cond, define, etc.

• Primitives

– Numbers (infinitely many)

– Booleans: #t, #f

– Functions (+, -, and, or, etc.)

• Evaluation Complexity

– Environments (more than ½ of our eval code)

Can we get rid of all this and still have a useful language?

If we have lazy evaluation and 

don’t care about abstraction, 

we don’t need these.

Hard to get rid of?
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λ-calculus

Alonzo Church, 1940
(LISP was developed from λ-calculus, 
not the other way round.)

term =   variable 

| term term 

| (term)

| λλλλ variable . term
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What is Calculus?

• In High School:

d/dx xn = nxn-1 [Power Rule]

d/dx (f + g) = d/dx f + d/dx g [Sum Rule]

Calculus is a branch of mathematics that 
deals with limits and the differentiation 
and integration of functions of one or 
more variables...
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Real Definition

• A calculus is just a bunch of rules for 
manipulating symbols.

• People can give meaning to those 
symbols, but that’s not part of the 
calculus.

• Differential calculus is a bunch of rules 
for manipulating symbols.  There is an 
interpretation of those symbols 
corresponds with physics, slopes, etc.
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Lambda Calculus

• Rules for manipulating strings of 
symbols in the language:

term =   variable 

| term term 

| (term)

| λλλλ variable . term

• Humans can give meaning to those 
symbols in a way that corresponds to 
computations.
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Why?

• Once we have precise and formal rules for 
manipulating symbols, we can use it to 
reason with.

• Since we can interpret the symbols as 
representing computations, we can use it 
to reason about programs.
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Evaluation Rules

α-reduction (renaming)

λy. M ⇒α λv. (M [y v])

where v does not occur in M.

β-reduction (substitution)

(λx. M)N ⇒ β M [ x N ]α

α
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Reduction (Uninteresting Rules)
λy. M → λv. (M [y v])

where v does not occur in M.

M → M

M → N ⇒ PM → PN

M → N ⇒ MP → NP

M → N ⇒ λx. M → λx. N

M → N and N → P ⇒ M → P

α
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β-Reduction 
(the source of all computation)

(λx. M)N → M [ x N ]α
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Evaluating Lambda Expressions

• redex:  Term of the form (λx. M)N 

Something that can be β-reduced

• An expression is in normal form if it 
contains no redexes (redices).

• To evaluate a lambda expression, keep 
doing reductions until you get to normal 
form.
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Recall Apply in Scheme

“To apply a procedure to a list of 
arguments, evaluate the procedure in a 
new environment that binds the formal 
parameters of the procedure to the 
arguments it is applied to.”

• We’ve replaced environments with 
substitution.

• We’ve replaced eval with reduction.
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Some Simple Functions

I ≡ λx.x

C ≡ λxy.yx

Abbreviation for λx.(λy. yx)

CII = (λx.(λy. yx)) (λx.x) (λx.x)

→β (λy. y (λx.x)) (λx.x)

→β λx.x (λx.x)

→β λx.x

= I
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Example

λ f. ((λ x.f (xx)) (λ x. f (xx)))

Try this one at home...
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Charge
• PS6 Due Monday

• PS7/PS8 Out Monday

– PS8: “Make a dynamic web application”

– PS7: Learn to use tools you will use for PS8

– If you have a group and idea in mind for PS8 
soon enough, you may not need to do PS7

• Friday: 

– Computability in Theory and Practice

– Making Primitives using Lambda Calculus


