
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Class 30: Vocational Skills
How (and Why) to Build a
Dynamic Web Application

2CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Trick-or-Treat

Trickers?

“Trick or Treat?”

Trickers
Bureau

R, Challenge

Valid!

Challenge

R = H (secret, Challenge)

3CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Ghost-in-the-Middle Attack

Trickers

“Trick or
Treat?”

“Go” “Trick or
Treat?”

Challenge: N
Challenge: N

R = H (secret, N)

Challenge: N

R = H (secret, N) R = H (secret, N)

4CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Who Invented the Internet?

5CS150 Fall 2005: Lecture 30: Dynamic Web Applications

internetwork

A collection of multiple networks
connected together, so messages can be
transmitted between nodes on different
networks.

6CS150 Fall 2005: Lecture 30: Dynamic Web Applications

The First internet
• 1800: Sweden and Denmark worried about

Britain invading

• Edelcrantz proposes link across strait
separating Sweden and Denmark to connect
their (signaling) telegraph networks

• 1801: British attack Copenhagen, network
transmit message to Sweden, but they don’t
help.

• Denmark signs treaty with Britain, and stops
communications with Sweden

2

7CS150 Fall 2005: Lecture 30: Dynamic Web Applications

First Use of Internet

• October 1969: First packets on the
ARPANet from UCLA to Stanford. Starts to
send "LOGIN", but it crashes on the G.

• 20 July 1969:

Live video (b/w) and
audio transmitted from
moon to Earth, and to
millions of televisions
worldwide.

8CS150 Fall 2005: Lecture 30: Dynamic Web Applications

The Modern Internet

• Packet Switching: Leonard Kleinrock (UCLA)
thinks he did, Donald Davies and Paul Baran,
Edelcrantz’s signalling network (1809) sort of
did it

• Internet Protocol: Vint Cerf, Bob Kahn

• Vision, Funding: J.C.R. Licklider, Bob Taylor

• Government: Al Gore (first politician to promote

Internet, 1986; act to connect government networks
to form “Interagency Network”)

9CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Kahn and Cerf’s Answer
Al Gore was the first political leader to recognize the
importance of the Internet and to promote and support its
development.

No one person or even small group of persons exclusively
"invented" the Internet. It is the result of many years of
ongoing collaboration among people in government and the
university community. But as the two people who designed
the basic architecture and the core protocols that make the
Internet work, we would like to acknowledge VP Gore's
contributions as a Congressman, Senator and as Vice
President. No other elected official, to our knowledge, has
made a greater contribution over a longer period of time.

http://www.firstmonday.org/issues/issue5_10/wiggins/

10CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Government and Networking
Chappe wanted a commercial network

Anyone performing unauthorized transmissions of signals from
one place to another, with the aid of telegraphic machines or
by any other means, will be punished with an imprisonment of
one month to one year, and a fine of 1,000 to 10,000 Francs.

The use of novel methods that modify established habits, often hurts
the interests of those who profit the most from the older methods.
Few people, with the exception of the inventors, are truly interested in
helping projects succeed while their ultimate impact is still uncertain. .
. . Those in power will normally make no effort to support a new
invention, unless it can help them to augment their power; and even
when they do support it, their efforts are usually insufficient to allow
the new ideas to be fully exploited. (Claude Chappe, 1824)

French Law passed in 1837 made private networking illegal

11CS150 Fall 2005: Lecture 30: Dynamic Web Applications

The World Wide Web

12CS150 Fall 2005: Lecture 30: Dynamic Web Applications

The “Desk Wide Web”

Memex Machine
Vannevar Bush, As We May Think, LIFE, 1945

3

13CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Licklider and Taylor’s Vision
Available within the network will be functions and services to
which you subscribe on a regular basis and others that you
call for when you need them. In the former group will be
investment guidance, tax counseling, selective dissemination
of information in your field of specialization, announcement
of cultural, sport, and entertainment events that fit your
interests, etc. In the latter group will be dictionaries,
encyclopedias, indexes, catalogues, editing programs,
teaching programs, testing programs, programming systems,
data bases, and – most important – communication, display,
and modeling programs. All these will be – at some late
date in the history of networking - systematized and
coherent; you will be able to get along in one basic
language up to the point at which you choose a
specialized language for its power or terseness.

J. C. R. Licklider and Robert W. Taylor, The Computer
as a Communication Device, April 1968

14CS150 Fall 2005: Lecture 30: Dynamic Web Applications

The World Wide Web

• Tim Berners-Lee, CERN (Switzerland)

• First web server and client, 1990

• Established a common language for
sharing information on computers

• Lots of previous attempts (Gopher, WAIS,
Archie, Xanadu, etc.)

15CS150 Fall 2005: Lecture 30: Dynamic Web Applications

World Wide Web Success

• World Wide Web succeeded because it
was simple!

– Didn’t attempt to maintain links, just a
common way to name things

– Uniform Resource Locators (URL)

http://www.cs.virginia.edu/cs150/index.html

Service Hostname File Path

HyperText Transfer Protocol

16CS150 Fall 2005: Lecture 30: Dynamic Web Applications

HyperText Transfer Protocol

Client (Browser)

GET /cs150/index.html HTTP/1.0

<html>
<head>
…

Contents
of file

Server

HTML
HyperText Markup Language

17CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Popular Web Site: Strategy 1
Static, Authored Web Site

Web Programmer,
Content Producer

http://www.twinkiesproject.com/

Drawbacks:
•Have to do all the
work yourself
•The world may
already have enough
Twinkie-experiment
websites

18CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Popular Web Site: Strategy 2
Dynamic Web Applications

Seed content
and function

Web Programmer,
Content Producer

eBay in 1997
http://web.archive.org/web/19970614001443/http://www.ebay.com/

Produce more
content

Attracts users

4

19CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Popular Web Site: Strategy 2
Dynamic Web Applications

Seed content
and function

eBay in 1997

Produce more
content

Attracts users

eBay in 2005

Advantages:
• Users do most of the work
• If you’re lucky, they might even pay you
for the privilege!

Disadvantages:
• Lose control over the content (you might

get sued for things your users do)
• Have to know how to program a web

application

20CS150 Fall 2005: Lecture 30: Dynamic Web Applications

• Covers topics primarily selected for their
practical (not intellectual) value

• Covers material found in “For Dummies”
books (but we’ll cover it differently)

• There is no “Computability Theory for
Dummies”, “Complexity Theory for
Dummies”, “Higher Order Procedures for
Dummies”, “Recursive Definitions for
Dummies”, etc. book

Today’s Aberrant Class

21CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Vocational Skills

SQL

Python

HTML

Scheme

Job listings at monster.com
(2 Nov 2005, within 100 miles of Charlottesville):

427 $30-50K

20 within 100 miles $40-$150K

“more than 1000
within 100 miles” $80-$400K

5 $400K
Loan Officers / Mortgage Brokers All Experience Levels Needed

“A performance based incentive scheme including company car”
Salary $400,000/year
(Note: none for Scheme programming language)

22CS150 Fall 2005: Lecture 30: Dynamic Web Applications

HTML: HyperText Markup Language

• Language for controlling presentation of
web pages

• Uses formatting tags

–Enclosed between < and >

• Not a universal programming language

Proof: no way to make an infinite loop

23CS150 Fall 2005: Lecture 30: Dynamic Web Applications

HTML Grammar Excerpt
Document ::= <html> Header Body </html>
Header ::= <head> HeadElements </head>
HeadElements ::= HeadElement HeadElements

HeadElements ::=

HeadElement ::= <title> Element </title>

Body ::= <body> Elements </body>
Elements ::= Element Elements

Elements ::=

Element ::= <p> Element </p>

Make Element a paragraph.
Element ::= <center> Element </center>

Center Element horizontally on the page.
Element ::= Element

Display Element in bold.
Element ::= Text

What is a HTML interpreter?

24CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Dynamic Web Sites
• Programs that run on the client’s machine

– Java, JavaScript, Flash, etc.: language must be supported
by the client’s browser (so they are usually flaky and
don’t work for most visitors)

– Used mostly to make annoying animations to make
advertisements more noticeable

– Occasionally good reasons for this: need a fancy interface
on client side (like Google Maps)

• Programs that run on the web server

– Can be written in any language, just need a way to
connect the web server to the program

– Program generates regular HTML – works for everyone

– (Almost) Every useful web site does this

5

25CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Dynamic Web Site

Client (Web Browser)
“HTML Interpreter”

GET http://www.people.virginia.edu/~dsu9w/hoorides/browse.cgi

<html>
<head>
…

Server

26CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Dynamic Web Site
Client

File Server
GET .../browse.cgi

Read ../public_html/hoorides/browse.cgi

#!/uva/bin/python

...

Request
Processor

browse.cgi

27CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Processing a GET Request

#!/uva/bin/python

...
print "<h1>Ride List</h1>"
form = cgi.FieldStorage()

print "<h3>Rides

Offered</h3>"

rideTable = rides.Rides ()
...

Python Code: Evaluate using
Python evaluator, send output
to client

Python
Evaluator

to
Client

28CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Python
• A universal programming language

– Everything you can compute in Scheme you
can compute in Python, and vice versa

– Friday we will explain why more convincingly

• Imperative Language

– Designed to support a programming where
most of the work is done using assignment

• Object-Oriented Language

– Built in support for classes that package data
and procedures

29CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Learning New Languages
• Syntax: Where the {, ;, $, etc. all go

– If you can understand a BNF grammar, this is easy

• Semantics: What does it mean

– Learning the evaluation rules

– Harder, but most programming languages have very
similar evaluation rules

• Style

– What are the idioms and customs of experienced
programmers in that language?

• Takes many years to learn

• Need it to be a “professional” Python programmer, but not to
make a useful program

30CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Python If

Instruction ::= if (Expression) :
Statements

Evaluate Expression. If it evaluates
to true, evaluate the Statements.

It is similar to (if Expression (begin Statements))
Differences:

Indenting and new lines matter!
Changing the indentation changes meaning of code

What “true” means:
Scheme: anything that is not #f.
Python: anything that is not False, None, 0,

and empty string or container

6

31CS150 Fall 2005: Lecture 30: Dynamic Web Applications

browse.cgi (part 1)
#!/uva/bin/python

import cgi
import util
import cookies
import users
import rides
import ride
import sys

util.printHeader ("Ride Details")
user = users.userTable.getCurrentUser ()

if not user:
print "Must be logged in to see ride list!"
util.printFooter ()
sys.exit (-1)

Tell web server to run the Python interpreter

Import modules we need (like load in Scheme)

Applications: <procedure> (<parameters>)

If the user is not logged in, exit

32CS150 Fall 2005: Lecture 30: Dynamic Web Applications

browse.cgi (part 2)
print "<h1>Ride List</h1>"
form = cgi.FieldStorage()

print "<h3>Rides Offered</h3>"
rideTable = rides.Rides ()
all = rideTable.getAll ()
print "<table cellspacing=4 border=1>"
print "<tr><th>Offerer</th><th>Map</th><th>Leave Date</th><th>Return
Date</th><th>Notes</th></tr>"

for ride in all:
if ride.isoffer:

print "<tr><td>" + users.userTable.lookupPrintName (ride.user) + "</td>"
print "<td>Link</td>"
print "<td>" + str(ride.leaveDate) + "</td><td>" + str(ride.retDate) + "</td>"
print "<td><pre>" + ride.notes + "</pre></td></tr>"

print "</table>"
print "<p>"

Output on response web page

for is like map!

33CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Using a Database

• HTTP is stateless

– No history of information from previous
requests

• To do something useful, we probably need
some state that changes as people visit
the site

• That’s what databases are for – store,
manipulate, and retrieve data

34CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Python Code:
Evaluate using Python
evaluator, send result to
client

Python
Evaluator

to
Client

Database

SQL Command
Values

#!/uva/bin/python

...
print "<h1>Ride List</h1>"
form = cgi.FieldStorage()

print "<h3>Rides

Offered</h3>"

rideTable = rides.Rides ()
...

35CS150 Fall 2005: Lecture 30: Dynamic Web Applications

SQL

• Structured Query Language (SQL)

– (Almost) all databases use it

• Database is tables of fields containing
values

• All fields have a type (and may have other
attributes like UNIQUE)

• Similar to procedures from PS5

36CS150 Fall 2005: Lecture 30: Dynamic Web Applications

Charge

• Combining Python, SQL and HTML is very
powerful

– Query can be a string generated by your program!

– Code can be generated based on what is in the
database

• PS7 is like PS1:

– Lots of new tools to learn and code to understand,
very little code to write

– Take advantage of lab hours:

• Thursday, 7-8:30pm; Friday, 2-3:30pm, Sunday, 4-7pm

