
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Class 31:
Cookie
Monsters and
Semi-Secure
Websites

2CS150 Fall 2005: Lecture 31: Cookie Monsters

Why Care about Security?

3CS150 Fall 2005: Lecture 31: Cookie Monsters

Security

• Confidentiality – keeping secrets

– Protect user’s data

• Integrity – making data reliable

– Preventing tampering

– Only authorized people can insert/modify data

• Availability

– Provide service (even when attacked)

– Can’t do much about this without resources

4CS150 Fall 2005: Lecture 31: Cookie Monsters

How do you authenticate?

• Something you know

– Password

• Something you have

– Physical key (email account?, transparency?)

• Something you are

– Biometrics (voiceprint, fingerprint, etc.)

Serious authentication requires at least 2 kinds

5CS150 Fall 2005: Lecture 31: Cookie Monsters

Early Password Schemes

Lx.Ly.xdave

fidoalyssa

PasswordUserID

schemerben

Login: alyssa
Password: spot
Failed login. Guess again.

Login does direct
password lookup
and comparison.

6CS150 Fall 2005: Lecture 31: Cookie Monsters

Login: alyssa
Password: fido

Terminal

Trusted Subsystem

Eve

Login Process

login sends
<“alyssa”, “fido”>

2

7CS150 Fall 2005: Lecture 31: Cookie Monsters

Password Problems

• Need to store the passwords
– Dangerous to rely on database being
secure

• Need to transmit password from user
to host
– Dangerous to rely on Internet being
confidential

Solve this today

Solve this Wednesday

8CS150 Fall 2005: Lecture 31: Cookie Monsters

First Try: Encrypt Passwords

encryptK (“schemer”)ben

PasswordUserID

encryptK (“Lx.Ly.x”)dave

encryptK (“fido”)alyssa

Problem if K isn’t so secret: decryptK (encryptK (P)) = P

• Instead of storing password, store password
encrypted with secret K.

• When user logs in, encrypt entered password and
compare to stored encrypted password.

9CS150 Fall 2005: Lecture 31: Cookie Monsters

Hashing

9

8

7

6

5

4

3

2

1

0

“neanderthal”“dog”

H (char s[]) = (s[0] – ‘a’) mod 10

“horse”

• Many-to-one: maps a
large number of values
to a small number of
hash values

• Even distribution: for
typical data sets,
probability of (H(x) =
n) = 1/N where N is
the number of hash
values and n = 0..N –
1.

• Efficient: H(x) is easy
to compute.

10CS150 Fall 2005: Lecture 31: Cookie Monsters

Cryptographic Hash Functions

One-way

Given h, it is hard to find x

such that H(x) = h.

Collision resistance

Given x, it is hard to find y ≠ x

such that H(y) = H(x).

11CS150 Fall 2005: Lecture 31: Cookie Monsters

Example One-Way Function

Input: two 100 digit numbers, x and y

Output: the middle 100 digits of x * y

Given x and y, it is easy to calculate
f (x, y) = select middle 100 digits (x * y)

Given f (x, y) hard to find x and y.

12CS150 Fall 2005: Lecture 31: Cookie Monsters

A Better Hash Function?

• H(x) = encryptx (0)

• Weak collision resistance?
– Given x, it should be hard to find y ≠ x such
that H(y) = H(x).

– Yes – encryption is one-to-one. (There is
no such y.)

• A good hash function?
– No, its output is as big as the message!

3

13CS150 Fall 2005: Lecture 31: Cookie Monsters

Actual Hashing Algorithms

• Based on cipher block chaining
– Start by encrypting 0 with the first block

– Use the next block to encrypt the previous
block

• SHA [NIST95] – 512 bit blocks, 160-bit
hash

• MD5 [Rivest92] – 512 bit blocks, produces
128-bit hash
– This is what we will use: built in to PHP

14CS150 Fall 2005: Lecture 31: Cookie Monsters

Hashed Passwords

md5 (“schemer”)ben

PasswordUserID

md5 (“Lx.Ly.x”)dave

md5 (“fido”)alyssa

15CS150 Fall 2005: Lecture 31: Cookie Monsters

Dictionary Attacks

• Try a list of common passwords
– All 1-4 letter words

– List of common (dog) names

– Words from dictionary

– Phone numbers, license plates

– All of the above in reverse

• Simple dictionary attacks retrieve most
user-selected passwords

• Precompute H(x) for all dictionary entries

16CS150 Fall 2005: Lecture 31: Cookie Monsters

(at least) 86% of users are
dumb and dumber

14%Other (possibly good passwords)

15%Words in dictionaries or names

18%Six lowercase letters

21%Five same-case letters

14%Four alphabetic letters

14%Three characters

2%Two characters

0.5%Single ASCII character

(Morris/Thompson 79)

17CS150 Fall 2005: Lecture 31: Cookie Monsters

Salt of the Earth

932

2437

1125

Salt

DES+25 (0, “schemer”, 2437)ben

PasswordUserID

DES+25 (0, “Lx.Ly.x”, 932)dave

DES+25 (0, “Lx.Ly.x”, 1125)alyassa

How much harder is the off-line dictionary attack?

DES+ (m, key, salt) is an encryption algorithm that
encrypts in a way that depends on the salt.

Salt: 12 random bits

(This is the standard UNIX password scheme.)

18CS150 Fall 2005: Lecture 31: Cookie Monsters

Python Code

// We use the username as a "salt" (since they must be unique)
encryptedpass = crypt.crypt (password, user)

bafd72c60f450ed665a6eadc92b3647fevans

9928ef0d7a0e4759ffefbadb8bc84228alyssa

passworduser

4

19CS150 Fall 2005: Lecture 31: Cookie Monsters

Authenticating Users

• User proves they are a worthwhile person
by having a legitimate email address

– Not everyone who has an email address is
worthwhile

– Its not too hard to snoop (or intercept)
someone’s email

• But, provides much better authenticating
than just the honor system

20CS150 Fall 2005: Lecture 31: Cookie Monsters

Registering for Account

• User enters email address

• Sent an email with a temporary password

rnd = str(random.randint (0, 9999999))

+ str(random.randint (0, 9999999))
encrnd = crypt.crypt (rnd, str(random.randint (0, 99999)))

users.userTable.createUser (user, email, firstnames, lastname, encrnd)

sendMail.send (email, "hoorides-bot@cs.virginia.edu", "Reset Password", \
"Your " + constants.SiteName + \

" account has been created. To login use:\n user: " + \
user + "\n password: " + encrnd + "\n")

...
From register-process.cgi

21CS150 Fall 2005: Lecture 31: Cookie Monsters

Users and Passwords
def createUser(self, user, email, firstnames, lastname, password) :
c = self.db.cursor ()

encpwd = crypt.crypt (password, user)
query = "INSERT INTO users (user, email, firstnames, lastname, password) " \

+ "VALUES ('" + user + "', '" + email + "', '" \
+ firstnames + "', '" + lastname + "', '" + encpwd"')"

c.execute (query)
self.db.commit ()

From users.py (cookie processing and
exception code removed)

def checkPassword(self, user, password):
c = self.db.cursor ()

query = "SELECT password FROM users WHERE user='" + user + "'"
c.execute (query)

pwd = c.fetchone ()[0]
if not pwd:

return False
else:

encpwd = crypt.crypt (password, user)
return encpwd == pwd

22CS150 Fall 2005: Lecture 31: Cookie Monsters

Cookies

• HTTP is stateless: every request is
independent

• Don’t want user to keep having to enter
password every time

• A cookie is data that is stored on the
browser’s machine, and sent to the web
server when a matching page is visited

23CS150 Fall 2005: Lecture 31: Cookie Monsters

Using Cookies
• Look at the PS7 provided code (cookies.py)

• Cookie must be sent before any HTML is
sent (util.printHeader does this)

• Be careful how you use cookies – anyone
can generate any data they want in a cookie

– Make sure they can’t be tampered with: use
md5 hash with secret to authenticate

– Don’t reuse cookies - easy to intercept them (or
steal them from disks): use a counter than
changes every time a cookie is used

24CS150 Fall 2005: Lecture 31: Cookie Monsters

Problems Left
• The database password is visible in plaintext
in the Pythin code

– No way around this (with UVa mysql server)

– Anyone who can read UVa filesystem can access
your database

• The password is transmitted unencrypted
over the Internet (next class)

• Proving you can read an email account is
not good enough to authenticate for
important applications

5

25CS150 Fall 2005: Lecture 31: Cookie Monsters

Charge

• Authentication

– At best, all this does is check someone can
read mail sent to a .virginia.edu email address

• Find PS8 partners now!

