

Turing Machines and Complexity

- Stronger version:
- Complexity classes P, NP, and NP-complete are defined for Turing machine steps, but apply identically to all "normal" computers
- Today: "Abnormal" Computers
- Might change what is computable (probably don't)
- Do change what a normal "step" is

Normal Steps

- Turing machine:
- Read one square on tape, follow one FSM transition rule, write one square on tape, move tape head one square
- Lambda calculus:
- One beta reduction
- Your PC:
- Execute one instruction (?)
- What one instruction does varies

CS150 Fall 2005: Lecture 33: Alternate Computing Models

Abnormal Imaginary Computer

- "Accelerating" TM
- Like a regular TM, except the first step takes 1 second, second step takes $1 / 2$ second, third step takes $1 / 4$ second, $\ldots \mathrm{n}^{\text {th }}$ step takes $1 / 2^{\text {n }}$ second
- Is our "Accelerating" TM more powerful than a regular TM?

Quantum Physics for Dummies

- Light behaves like both a wave and a particle at the same time
- A single photon is in many states at once
- Can't observe its state without forcing it into one state
- Schrödinger's Cat
- Put a live cat in a box with cyanide vial that opens depending on quantum state
- Cat is both dead and alive at the same time until you open the box

CS150 Fall 2005: Lecture 33: Alternate Computing Models

Qubit

- Regular bit: either a 0 or a 1
- Quantum bit: 0, 1 or in between
- p\% probability it is a 1
- A single qubit is in 2 possible states at once
- If you have 7 bits, you can represent any one of 2^{7} different states
- If you have 7 qubits, you have 2^{7} different states (at once!)

CS150 Fall 2005: Lecture 33: Alternate Computing Models

Quantum Computers Today

- Several quantum algorithms
- Shor's algorithm: factoring using a quantum computer
- Actual quantum computers
- 5-qubit computer built by IBM $(2001 \boldsymbol{1}(=5 * 3)$
- Implemented Shor's algorithm to factor:
- "World's most complex quantum computation"
- Los Alamos has built a 7-qubit computer
- To exceed practical normal computing need > 30 qubits

DNA

- Sequence of nucleotides: adenine (A), guanine (G), cytosine ($($), and thymine (T)
- Two strands, A must attach to T and G must attach to C

Hamiltonian Path Problem

- Input: a graph, start vertex and end vertex
- Output: either a path from start to end that touches each vertex in the graph exactly once, or false indicating no such

How hard is the Hamiltonian path problem?

CS150 Fall 2005: Lecture 33: Alternate Computing Models
14 Computer Science

Encoding The Graph

- Make up a two random 4-nucleotide sequences for each city:

CHO:	$\mathrm{CHO}_{1}=\mathrm{ACTT}$	$\mathrm{CHO}_{2}=$ gcag
RIC:	$\mathrm{RIC}_{1}=$ TCGG	$\mathrm{RIC}_{2}=$ actg
IAD:	$\mathrm{IAD}_{1}=$ GGCT	$\mathrm{IAD}_{2}=$ atgt
BWI:	$\mathrm{BWI}_{1}=$ GATC	$\mathrm{BWI}_{2}=$ tcca

- If there is a link between two cities $(\mathrm{A} \rightarrow \mathrm{B})$, create a nucleotide sequence: $\mathrm{A}_{2} \mathrm{~B}_{1}$

$\mathrm{CHO} \rightarrow$ RIC	gcagTCGG	Based on Fred Hapgood's notes on Adelman's talk
$\mathrm{RIC} \rightarrow \mathrm{CHO}$	actg ACTT	
2005	pputing Models	15 俞 Computer Scien

Path Binding

Getting the Solution

- Extract DNA strands starting with CHO and ending with BWI
- Easy way is to remove all strands that do not start with CHO, and then remove all strands that do not end with BWI
- Measure remaining strands to find ones with the right weight ($7 * 8$ nucleotides)
- Read the sequence from one of these strands

Why don't we use DNA computers?

- Speed: shaking up the DNA strands does 10^{14} operations per second (\$400M supercomputer does 10^{10})
- Memory: we can store information in DNA at 1 bit per cubic nanometer
- How much DNA would you need?
- Volume of DNA needed grows exponentially with input size
- To solve ~45 vertices, you need ~20M gallons

Computability for Quantum and DNA computers

- DNA computers: no change to what is computable, only changes time it takes
- Quantum computers:
- They are so strange they even change what is computable!
- Quantum physics provides true randomness, something a Turing machine cannot do

Charge

- Exam 2 out Friday
- Covers through Monday
- No questions on Quantum physics or DNA
- Links to example exams on the web
- Review session Wednesday, 7pm

