

Finding the Aliens

for signal in signals:
power $=$ findPowerSpectrum (signal)
if (isAlien (power)):
print "Found an alien!" + signal

Processing Signals

- Power spectrum
- Find patterns in signal
- Eliminate natural and human-made signals
- Today:
- BlueGene, 280Tflops/s
~\$200 per Gigaflop
- No success finding

Cray T3E-1200E (~1998) 1 Teraflop/s = Trillion floating point operations/sec aliens

CS150 Fall 2005: Lecture 37: Finding Aliens
4 Computer Science

Finding the Aliens Cheaper

parfor signal in signals:
power $=$ findPowerSpectrum (signal)
if (isAlien (power)):
print "Found an alien!" + signal
Parallel for: instead of doing each element sequentially in order, we can do each element in parallel on a different machine.

Note: python does not actually have parfor, but other languages do.
Public Distributed Computing

Preventing Cheaters

- Send the same job to multiple workers
- Wastes computing
- What if the cheater controls many machines?
- Instead of response being "no aliens" make clients send a response that proves they did computation
- Sometimes send out fake jobs that have aliens in them
- Clients must find the fake aliens
- Need to make sure the fake jobs look just like real jobs
- (Airport security scanners work like this also)

Doug Szajda and colleagues at University of Richmond work on these problems (see link on notes)

Incentives are Dangerous

- People will cheat*
- How to cheat?
- Respond with the "there are no aliens" message without actually doing all the work
- Chances of getting caught?
- 0 (Assumes all jobs have no aliens. So far this is true.)
* Only applies in real world, not at UVa.

CS150 Fall 2005: Lecture 37: Finding Aliens

Why is finding aliens so "easy"?

Note: we haven't yet found any aliens, but its easy to set up the computation...

- Can be broken into many tasks
- Each task can be done completely independently
- No shared memory between the tasks
- The data to describe a task and response is small compared to the computing
- SETI@home jobs are 350KB data download, 1KB upload, 3.9 Trillion operations (several hours on PC)

CS150 Fall 2005: Lecture 37: Finding Aliens
12
Computer Science

Scheduling Meetings

Alice wants to schedule a meeting with Bob and Colleen

Why multiple processors is hard?

- Too few ordering constraints: race conditions
- Too many ordering constraints: deadlocks
- Hard/impossible to reason modularly
- If an object is accessible to multiple threads, need to think about what any of those threads could do at any time!

	Worry: nearly all standard desktop computers will be multi-processors soon!
cs150 Fall 2005: Lecture 37: Finding Aliens	20

Charge

- The easiest way to solve distributed scheduling problems is to "undistribute" them:
- Find your teammates now and make sure you know what you are doing next week
- Wednesday: Google
- Read the paper distributed today
- Friday: Review
- Send me your questions and topic requests
- Monday: PS8 presentations/demos

