

Defining Recursive Procedures

1. Be optimistic.

- Assume you can solve it.
- If you could, how would you solve a bigger problem.

2. Think of the simplest version of the problem, something you can already solve. (This is the base case.)
3. Combine them to solve the problem.

Find Closest Number

Be optimistic!
Assume you can define:
(find-closest-number goal numbers) that finds the closest number to goal from the list of numbers.
What if there is one more number?
Can you write a function that finds the closest number to match from newnumber and numbers?

Find Best Match

Strategy:

If the new number is better, than the best match with the other number, use the new number. Otherwise, use the best match of the other numbers.
> (find-closest 12 (list 111 21))
11
$>$ (find-closest 12 (list 95))
95

CS150 Fall 2005: Lecture 8: Recursing Recursively

Example

Define (find-closest goal numbers) that evaluates to the number in the list numbers list that is closest to goal:
> (find-closest 200 (list 101110120201340 588))

Defining Recursive Procedures

2．Think of the simplest version of the problem，something you can already solve．

If there is only one number，that is the best match．

Testing	```(define (find-closest goal numbers) (if (= 1 (length numbers)) (first numbers) (if (< (abs (- goal (first numbers))) (abs (- goal (first numbers) (find-closest goal (rest numbers))))) (find-closest goal (rest numbers))))```
```> (find-closest-number 200 (list 101 110 120 201 340 588)) 201 >(find-closest-number 0 (list 1)) 1 >(find-closest-number 0 (list ))```first: expects argument of type <non-empty list>; given ()	
csiso fall 2005	Recursing Recursively 10 会合 Compute

## GEB Chapter V

You could spend the rest of your life just studying things in this chapter（25 pages）！
－Music Harmony
－Stacks and Recursion
－Theology
－Language Structure
－Number Sequences
－Chaos
－Fractals（PS3 out today）
－Quantum Electrodynamics（late lecture）
－DNA（next to last lecture）
－Sameness－in－differentness
－Game－playing algorithms（upcoming lecture）

## Fibonacci's Problem

Filius Bonacci, 1202 in Pisa:
Suppose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits.

Suppose that our rabbits never die and that the female always produces one new pair (one male, one female) every month from the second month on.

How many pairs will there be in one year?

CS150 Fall 2005: Lecture 8: Recursing Recursively

## Fibonacci Numbers

## GEB p. 136:

These numbers are best defined recursively by the pair of formulas

$$
\begin{array}{r}
\operatorname{FIBO}(n)=\operatorname{FIBO}(\mathrm{n}-1)+\operatorname{FIBO}(\mathrm{n}-2) \\
\text { for } \mathrm{n}>2
\end{array}
$$

$\operatorname{FIBO}(1)=\operatorname{FIBO}(2)=1$
Can we turn this into a Scheme procedure?
Note: SICP defines Fib with $\operatorname{Fib}(0)=0$ and $\operatorname{Fib}(1)=1$ for base case. Same function except for $\mathrm{Fib}(0)$ is undefined in GEB version.

CS150 Fall 2005: Lecture 8: Recursing Recursively
15 Computer Science


## Defining Recursive Procedures <br> Slide 3 Returns...

1. Be optimistic.

- Assume you can solve it.
- If you could, how would you solve a bigger problem.

2. Think of the simplest version of the problem, something you can already solve. (This is the base case.)
3. Combine them to solve the problem. ;i; number
(define (fibo $n$ )
(if (or (=n1) (= n 2))
1 ;i; base case
(+ (fibo (-n 1))

## Defining FIBO

FIBO $(n)=$
FIBO ( $\mathrm{n}-1$ )
$+\operatorname{FIBO}(\mathrm{n}-2)$
for $n>2$
$\operatorname{FIBO}(1)=\operatorname{FIBO}(2)=1$
3. Combine them to solve the problem.

These numbers are best defined recursively by the pair of formulas solve a bigger problem.
2. Think of the simplest version of the problem, something you can already solve. you can solve it, if you you can sold, how would you

1. Be optimistic - assume

## Defining fibo

i;i; (fibo $n$ ) evaluates to the nth Fibonacci
(fibo (-n 2)))))
$\operatorname{FIBO}(1)=\operatorname{FIBO}(2)=1$
$\operatorname{FIBO}(n)=$
FIBO (n - 1)

$$
+\operatorname{FIBO}(n-2)
$$

$$
\text { for } \mathrm{n}>2
$$





## Music Harmony

Kleines Harmonisches Labyrinth (Little Harmonic Labyrinth)



[^0]
[^0]:    

