
Chapter 2

Language

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means just

what I choose it to mean - nothing more nor less.”

“The question is,” said Alice, “whether you can make words mean so many different

things.”

“The question is,” said Humpty Dumpty, “which is to be master that’s all.”

Lewis Carroll, Through the Looking Glass

Topics: what is language, what a language is made of, what

properties a language should have for programming computers, how

to describe languages

The most powerful tool we have for communication is language. This is true

whether we are considering communication between two humans, communica-

tion between a human programmer and a computer, or communication between

multiple computers. This chapter considers what a language is, how language

works, and introduces the techniques we will use to define languages.

1

2 CHAPTER 2. LANGUAGE

2.1 Languages and Infinity

A language is a set of surface forms, s, meanings, m, and a mapping between

the surface forms in s and their associated meanings1. In the earliest human lan-

guages, the surface forms were sounds. But, the surface forms can be anything that

can be perceived by the communicating parties. We will focus on languages where

the surface forms are text. A natural language is a language spoken by humans

such as English. Natural languages are very complex since they have evolved over

many thousands years of individual and cultural interaction. We will be primarily

concerned with designed languages that are created by humans for some purpose

(in particular, languages created for expressing computer programs).

A simple communication system could be described by just listing a table of sur-

face forms and their associated meanings. For example, this table describes a

communication system between traffic lights and drivers:

Surface Form Meaning

Green Light Go

Yellow Light Caution

Red Light Stop

Communication systems involving humans are notoriously imprecise and subjec-

tive. A driver and a police officer may disagree on the actual meaning of the Yellow

Light symbol, and may even disagree on which symbol is being transmitted by the

traffic light at a particular time. Communication systems for computers demand

precision: we want to understand what our programs will do, so it is important

that every step they make is understood precisely and unambiguously.

The method of defining a communication system by listing a table of <Symbol,

Meaning> pairs can work adequately only for trivial communication systems.

The number of possible meanings that can be expressed is limited by the number

of entries in the table. Thus, it is impossible to express any new meaning using

the communication system: all meanings must already be listed in the table!

A real language must be able to express infinitely many different meanings. This

means it must provide infinitely many surface forms, and a way of inferring the

1Thanks to Charles Yang for this definition.

2.2. LANGUAGE COMPONENTS 3

meaning of each possible surface form. No finite representation such as a printed

table can contain all the surface forms and meanings in an infinite language.

One way humans can generate infinitely large sets is to use repeating patterns. For

example, most humans would recognize the notation:

1, 2, 3, . . .

as the set of all natural numbers. We interpret the “. . . ” as meaning keep doing the

same thing for ever. In this case, it means keep adding one to the preceding num-

ber. This technique might be sufficient to describe some languages with infinitely

many meanings. For example, this table defines an infinite language:

Surface Form Meaning

“I run today.” Today, I run.

“I run the day after today.” One day after today, I run.

“I run the day after the day after today.” Two days after today, I run.

“I run the day after the day after the day after today.” Three days after today, run.

· · · · · ·

Although there are infinite languages we can describe in this way, it is wholly

unsatisfactory.2 The set of surface forms must be produced by simple repetition.

Although we can express new meanings using this type of language (for example,

we can always add one more “the day after” to the longest previously produced

surface form), the new surface forms and associated meanings are very similar to

previously known ones.

2.2 Language Components

A language is a set of surface forms and associated meanings, but the number of

surface forms in any powerful language is infinite. Hence, we cannot define a

language by listing all the surface forms and their meanings. Instead, we need to

2Languages that can be defined this way are known as regular languages. We will define this

more precisely in Chapter ??, and see that they are actually a bit more interesting than it seems

here.

4 CHAPTER 2. LANGUAGE

find ways of describing languages that allow us to describe an infinitely large set

of surface forms and meanings with a compact notation. The approach we will

use is to define a language by defining a set of rules that produce all strings in the

language (and no strings that are not in the language).

A language is composed of:

• primitives — the smallest units of meaning. A primitive cannot be broken

into smaller parts that have relevant meanings.

• means of combination — rules for building new language elements by com-

bining simpler ones.

In English, the primitives are the smallest meaningful units, known as morphemes.

The means of combination are rules for building words from morphemes, and for

building phrases and sentences from words.

Since we have rules for producing new words not all words are primitives. For

example, we can create a new word by adding anti- in front of an existing word.

The meaning of the new word is (approximately) “against the meaning of the

original word”.

For example, freeze means to pass from a liquid state to a solid state; antifreeze

is a substance designed to prevent freezing. An English speaker who knew the

meaning of freeze and anti- could roughly guess the meaning of antifreeze even if

the word is unfamiliar.

Note that the primitives are defined as the smallest units of meaning, not based on

the surface forms. We can break anti- into two syllables, or four letters, but those

sub-components do not have meanings related to the meaning of the morpheme.

This property of English means anyone can invent a new word, and use it in com-

munication in ways that will probably be understood by listeners who have never

heard this word. There can be no longest English word, since for whatever word

you claim to be the longest, I can create a longer one (for example, but adding

anti- to the beginning of your word).

Means of Abstraction. In addition to primitives and means of combination,

powerful languages have an additional type of component that enables economic

communication: means of abstraction. Means of abstraction allow us to give a

2.2. LANGUAGE COMPONENTS 5

simple name to a complex entity. In English, the means of abstraction are pro-

nouns like “she”, “it”, and “they”. The meaning of a pronoun depends on the

context in which it is used. It abstracts a complex meaning with a simple word.

For example, the it in the previous sentence abstracts “the meaning of a pronoun”,

but the it in the setence before that one abstracts “a pronoun”. In natural lan-

guages, means of abstraction tend to be awkward (English has she and he, but no

gender-neutral pronoun for abstracting a person), and confusing (it is often un-

clear what a particular it is abstracting). Languages for programming computers

need to have powerful and clear means of abstraction.

Next, we introduce two different ways of defining languages. We will limit our

discussion to textual languages. This means the surface forms will be sequences

of characters. We will refer to a sequence of zero or more characters as a string.

Hence, our goal in defining the surface forms of a textual language is to define the

set of strings in the language. The problem of associating meanings with those

strings is much more difficult; we consider it in various ways in later chapters.

Exercise 2.1. Merriam-Webster’s word for the year for 2006 was truthiness, a

word invented and popularized by Stephen Colbert.

a. (�) Invent a new English word by combining common morphemes.

b. (?) Get someone else to use the word you invented.

c. (? ? ??) Get Merriam-Webster to add your word to their dictionary.

Exercise 2.2. According to the Guinness Book of World Records, the longest

word in the English language is floccinaucinihilipilification, meaning “The act or

habit of describing or regarding something as worthless”.

a. (�) Break floccinaucinihilipilification into its morphemes. Show that a speaker

familiar with the morphemes could understand the word.

b. (�) Prove Guinness wrong by demonstrating a longer English word. An En-

glish speaker should be able to deduce the meaning of your word.

6 CHAPTER 2. LANGUAGE

2.3 Post Production Systems
As for any claims I

might make perhaps the

best I can say is that I

would have proved

Gödel’s Theorem in

1921 — had I been

Gödel.
Emil Post, from postcard to

Gödel, October 29, 1938.

(Quoted in Liesbeth De Mol,

Closing the Circle: An

Analysis of Emil Post’s Early

Work, Association for

Symbolic Logic, 2006.)

Production systems were invented by Emil Post, an American logician in the

1920’s. A Post production system consists of a set of production rules. Each

production rule consists of a pattern to match on the left side, and a replacement

on the right side. From an initial string, rules that match are applied to produce

new strings. For example, Douglas Hofstadter describes the following Post pro-

duction system known as the MIU-system in Gödel, Escher, Bach (each rule is

described first formally, and the quoted text below is the description from GEB):

Rule I: xI ::⇒xIU

“If you possess a string whose last letter is I, you can add

on a U at the end.”

Rule II: Mx ::⇒Mxx

“Suppose you have Mx. Then you may add Mxx to your

collection.”

Rule III: xIIIy ::⇒xUy

“If III occurs in one of the strings in your collection, you

may make a new string with U in place of III.”

Rule IV: xUUy ::⇒xy

“If UU occurs inside one of your strings, you can drop it.”

The rules use the variables x and y to match any sequence of symbols. On the left

side of a rule, x means match a sequence of zero or more symbols. On the right

side of a rule, x means produce whatever x matched on the left side of the rule.

We refer to this process as binding. The variable x is initially unbound — it may

match any sequence of symbols. Once it is matched, though, it is bound and refers

to the sequence of symbols that were matched.

For example, consider applying Rule II to MUM. To match Rule II, the first M

matches the M at the beginning of the left side of the rule. After that the rule uses

x, which is currently unbound. We can bind x to UM to match the rule. The right

side of the rule produces Mxx. Since x is bound to UM, the result is MUMUM.

Given these four rules, we can start from a given string and apply the rules to

produce new strings. For example, starting from MI we can apply the rules to

produce MUIUIU:

1. MI Initial String

2.4. REPLACEMENT GRAMMARS 7

2. MII Apply Rule II with x bound to I

3. MIIII Apply Rule II with x bound to II

4. MIIIIIIII Apply Rule II with x bound to IIII

5. MUIIIII Apply Rule III with x bound to M and y bound to IIIII

6. MUIIIIIU Apply Rule I with x bound to MUIIIII

7. MUIUIU Apply Rule III with x bound to MUI and y bound to IU

Note that at some steps we have many choices about which rule to apply, and

what bindings to use when we apply the rule. For example, at step 5 we could

have instead bound x to MUII and y to the empty string to produce MUIIU.

Exercise 2.3.

a. (�) Using the MIU-system, show how M can be derived starting from MI?

b. (�) Using the MIU-system, how many different strings can be derived starting

from UMI?

c. (�) Using the MIU-system, how many different strings can be derived starting

from MI?

d. (?) (Based on GEB) Using the MIU-system, is it possible to produce MU start-

ing from MI?

Exercise 2.4. (?) Devise a Post production system that can produce all the surface

forms in the { “I run today.”, “I run the day after today.”, “I run the day after the

day after today.”, . . . } language.

2.4 Replacement Grammars

Although Post production systems are powerful enough to generate complex lan-

guages3, they are more awkward to use than we would like. In particular, applying

3In Chapter ??, we will consider more carefully the set of languages that can be defined by

different systems.

8 CHAPTER 2. LANGUAGE

a rule requires making decisions about binding variables in the left side of a rule.

This makes it hard to reason about the strings in a language, and hard to determine

if a given string is in the language or not (see Exercise 2.3).

In this section, we will describe a similar, but simpler, way of defining a language

known as a grammar4. This is the most common way languages are defined by

computer scientists today, and the way we will use for the rest of this book.

A grammar is set of rules for generating all strings in the language. The gram-

mars we will use are a simple replacement grammar known as Backus-Naur Form

(BNF). Rules are of the form:

symbol ::⇒ replacement

These rules are similar to Post production rules, except that the left side of a rule

is always a single symbol. Whenever we can match the left side of a rule, we can

replace it with what appears on the right side of the matching rule.

We call the symbol on the left side of a rule a nonterminal, since it cannot ap-

pear in the final string. The right side of a rule contains one or more symbols.

These symbols may include nonterminals, which will be replaced using replace-

ment rules before generating the final string. They may also be terminals, which

are symbols that never appear as the left side of a rule. When we describe gram-

mars, we use italics to represent nonterminal symbols, and bold to represent ter-

minal symbols. Once a terminal is reached, no more replacements can be done on

it.

We can generate string in the language described by a replacement grammar by

starting from a designated start symbol (e.g., sentence), and at each step selecting

a nonterminal in the working string, and replacing it with the right side of a re-

placement rule whose left side matches the nonterminal. Unlike Post production

systems, there are no variables to bind in BNF grammar rules. We simply look for

a nonterminal that matches the left side of a rule.

Here is an example BNF grammar:

4You are probably already somewhat familiar with grammars from your time in what was

previously known as “grammar school”!

2.4. REPLACEMENT GRAMMARS 9

1. Sentence ::⇒ Noun Verb

2. Noun ::⇒ Alice

3. Noun ::⇒ Bob

4. Verb ::⇒ jumps

5. Verb ::⇒ runs

Starting from Sentence, we can generate four different sentences using the re-

placement rules: “Alice jumps”, “Bob jumps”, “Alice runs”, and “Alice jumps”.

A derivation shows how a grammar generates a given string. Here is the derivation

of “Alice runs”:

Sentence ::⇒Noun Verb using Rule 1

::⇒Alice Verb replacing Noun using Rule 2

::⇒Alice runs replacing Verb using Rule 5

We can represent a grammar derivation as a tree, where the root of the tree is

the starting nonterminal (sentence in this case), and the leaves of the tree are the

terminals that form the derived sentence. Such a tree is known as a parse tree.

Here is the parse tree for the derivation of “Alice runs”:

Sentence

qqqqqqq

MMMMMMM

Noun Verb

Alice runs

From this example, we can see that BNF notation offers some compression over

just listing the string in the language, since a grammar can have multiple replace-

ment rules for each nonterminal. Adding another rule like,

6. Noun ::⇒ Colleen

10 CHAPTER 2. LANGUAGE

to the grammar would add two new strings to the language.

Recursive Grammars. The real power of BNF as a compact notation for de-

scribing languages, though, comes once we start adding recursive rules to our

grammar. A recursive grammar includes a rule where the nonterminal on the left

side of the rule can be generated from its own replacement on the right side of the

rule. Suppose we add the rule,

7. Sentence ::⇒ Sentence and Sentence

to our example grammar. Now, how many sentences can we generate?

Infinitely many! For example, we can generate “Alice runs and Bob jumps” and

“Alice runs and Bob jumps and Colleen runs”. We can also generate “Alice runs

and Alice runs and Alice runs and Alice runs”, with as many repetitions of “Alice

runs” as we want. This is very powerful: it means a compact grammar can be used

to define an infinitely large language.

Example 2.1: Whole Numbers. Here is a grammar that defines the language

of the whole numbers (0, 1, . . .):

Number ::⇒ Digit MoreDigits

MoreDigits ::⇒
MoreDigits ::⇒ Number

Digit ::⇒ 0

Digit ::⇒ 1

Digit ::⇒ 2

Digit ::⇒ 3

Digit ::⇒ 4

Digit ::⇒ 5

Digit ::⇒ 6

Digit ::⇒ 7

Digit ::⇒ 8

Digit ::⇒ 9

Note that the second rule says we can replace MoreDigits with nothing. This is

sometimes written as ε to make it clear that the replacement is empty:

2.4. REPLACEMENT GRAMMARS 11

MoreDigits ::⇒ ε

This is a very important rule in the grammar—without it no strings could be gen-

erated; with it infinitely many strings can be generated. The key is that we can

only produce a string when all nonterminals in the string have been replaced with

terminals. Without the moredigits ::⇒ ε rule, the only rule we have with MoreDig-

its on the left side is the third rule: MoreDigits ::⇒ Number. The only rule we

have with Number on the left side is the first rule, which replaces Number with

Digit MoreDigits. Every time we go through this replacement cycle, we replace

MoreDigits with Digit MoreDigits. We can produce as many Digits as we want,

but without another rule we can never stop.

This is the difference between a circular definition, and a recursive definition.

Without the stopping rule, MoreDigits would be defined in a circular way. There

is no way to start with MoreDigits and produce something that does not con-

tain MoreDigits (or a nonterminal that eventually must produce MoreDigits) in it.

With the MoreDigits ::⇒ ε rule, however, we have a way to produce something

terminal from MoreDigits. This is known as a base case — a rule that turns an

otherwise circular definition into a meaningful, recursive definition.

Figure 2.1 shows a parse tree for the derivation of 150 from Number.

Condensed Notation. It is commonly useful to have many grammar rules with

the same left side nonterminal. For example, the whole numbers grammar has

ten rules with Digit on the left side to produce the ten terminal digits. Each of

these is an alternative rule that can be used when the production string contains

the nonterminal Digit. A compact notation for these types of rules is to use the

vertical bar (|) to separate alternative replacements. For example, we could write

the ten Digit rules compactly as:

Digit ::⇒ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Exercise 2.5. (�) The grammar for whole numbers is complicated because we do

not want to include the empty string in our language. Devise a simpler grammar

that defines the language of the whole numbers including the empty string.

Exercise 2.6. Suppose we replaced the first rule (Number ::⇒ Digit MoreDigits)

12 CHAPTER 2. LANGUAGE

Number

qqqqqqq

MMMMMMM

Digit MoreDigits

1 Number

qqqqqqq

MMMMMMM

Digit MoreDigits

5 Number

qqqqqqq

MMMMMMM

Digit MoreDigits

0 ε

Figure 2.1: Deriviation of 150 from Number.

in the whole numbers grammar with this rule:

Number ::⇒ MoreDigits Digit

a. (�) How does this change the parse tree for the derivation of 150 from Num-

ber? Draw the parse tree that results from the new grammar.

b. (?) Does this change the language? Either show some string that is in lan-

guage defined by the modified grammar but not in the original language (or

vice versa), or argue that both grammars can generate exactly the same sets of

strings.

Exercise 2.7. (?) Devise a grammar that defines the language of dates (e.g., “De-

cember 7, 1941”). Is it possible for your language to only include valid dates (that

is, “January 31, 2007 is in the language, but “February 29, 2007” is not)?

