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Environments 

 

1. Consider the environment shown below (assume all the usual primitives are defined in the 

global environment, but not shown): 

 
 

Provide one additional expression that follows the given definition, such that the environment 

shown above results when the sequence of expressions is evaluated. 

 

(define x (cons 1 (cons 2 3))) 

 

 

(set-cdr! (cdr x) x) 

Global Environment 

x 

1
2
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2. Consider the environment shown below (as in question 1, assume all the usual primitives are 

defined in the global environment, but not shown; the notation #<primitive:zero?> denotes the 

primitive procedure zero?): 

 

 
 

Provide a sequence of Scheme expressions such that evaluating the sequence of expressions 

produces the environment shown above. 

This was unintentionally tricky.  For what is shown, a correct answer would be: 
 

(define compose (lambda (f g) (lambda (n) (g (f n))))) 

(define not-zero? 

   (let ((f zero?) 

         (g not)) 

     (lambda (f g)  

        (lambda (n) (g (f n)))))) 

 

This is not a very sensible procedure though!  What the not-zero? procedure 

should have been is: 

 

 

 

 

Then, the answer is the more reasonable: 
(define compose (lambda (f g) (lambda (n) (g (f n))))) 

(define not-zero? (compose zero? not)) 

(Full credit was given for either answer, or any answer that reflected the new 

environment correctly.) 

environment: 
parameters: (f g) 

body: (lambda (n) 
       (g (f n)) 

 

Global Environment 

compose 

not-zero? 

f      #<primitive:zero?> 

g     #<primitive not> 

environment: 
parameters: (f g) 

body: (lambda (n) 
       (g (f n)) 

 

environment: (to f, g environment as before) 
parameters: (n) 

body: (g (f n)) 
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Computability 
3. Is the Contains-Cross-Site-Scripting-Vulnerability Problem described below computable or 

uncomputable?  Your answer should include a convincing argument why it is correct. 

 

Input:  P, a specification (all the code and html files) for a dynamic web 

application. 

 

Output:   If P contains a cross-site-scripting vulnerability, output True.  

Otherwise, output False. 

 

As demonstrated in class, a cross-site-scripting vulnerability is an opportunity an attacker can 

exploit to get their own script running on a web page generated by the web application. 

 

The CSSV Problem is uncomputable.  We show this by arguing 
that if we have an algorithm, contains-css?, that solves the 
CSSV Problem, we could use it to solve the Halting Problem.  

Since we know the Halting Problem is uncomputable, this is a 
convincing argument that the CSSV Problem is uncomputable. 

 
Here’s how: 

 
(define (halts? P) 

   (contains-css? 

      ‘(lambda () 

          (apply-procedure (remove-vulnerabilities P)) 

          (vulnerable-procedure)))) 

 

Where vulnerable-procedure is a procedure that is vulnerable to 

cross-site-scripting attacks, and remove-vulnerabilities is a 

procedure that takes a procedure specification as input, and 

replaces all output with empty web pages (this could be done by 
replacing all the print commands with something that just 

ignores the parameters). 

 
Note that this is very similar to the proof in class we saw for the 

Is-Virus Problem. 
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4. Is the Remove-Cross-Site-Scripting-Vulnerabilities Problem described below computable or 

uncomputable?  Your answer should include a convincing argument why it is correct. 

 

Input:  P, a specification (all the code and html files) for a dynamic web 

application. 

 

Output:   P′, a specification for a dynamic web application.  On inputs that are not 

cross-site-scripting attacks, P′ behaves identically to P.  On inputs that 

are cross-site-scripting attacks, P′ ignores the attack input and displays a 

warning page. 

 

For this problem, both arguments are plausible depending on how a cross-

site-scripting attack is defined.  First, note that the remove-

vulnerabilities procedure we used in question 3 does not solve the 

Remove-CSS Problem.  This is because the program it outputs does not 
behave identically to the input program on non-attack inputs.  Second, we 

note that it is not necessary to be able to locate all vulnerabilities in P to 
solve the Remove-CSS problem.  It is enough to transform the program 
dynamically, so if it happens to run on an attack input it will display the 

warning page.  So, instead of detecting vulnerabilities, all we need to do is 
detect successful attacks.  Hence, we can solve the Remove-CSS problem 

if it is possible to examine an output web page and determine if it has a 
script generated by a user on it (this is the definition from question 3, “a 
cross-site-scripting vulnerability is an opportunity an attacker can exploit 

to get their own script running on a web page generated by the web 
application”.   

 
If we can track all data through the application to know if it came from a 
user, then we can do this, by examining the output of the program to see 

if any of the data in the output that was generated from user data contains 
a script.  It is possible to do this with an algorithm: just look for the 

<script …> tags (and a few other things).  To track the data, we need to 
modify the interpreter to evaluate P, but keep extra information for each 
data object to indicate whether or not it came from an untrusted source.  

(For an example of a program that does this, see www.phprevent.org.) 
 

If you interpreted a CSS attack more strictly to require not only getting 
script on the output page, but that script doing something malicious, then 
the problem is uncomputable.  This is because it is uncomputable to 

determine if a script does something malicious (similarly to the Is-Virus 

Problem). 
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Interpreters and Asymptotic Running Time 
 

For the next three questions, you are given a procedure definition.  Your answer should describe 

its asymptotic running time when evaluated using (a) Charme, and (b) MemoCharme (the 

language defined at the end of PS7), and (c) LazyCharme.  You may assume the Python 

dictionary type provides lookups with running time in O(1).  Your answers should include a clear 

supporting argument, and define all variables you use in your answer.   
 

5.  
(define mysterious 

    (lambda (a) 

       (cond 
          ((> a 0) (mysterious (- a 1))) 

          ((zero? a) 0)))) 

 

 

(a) Running time in Charme: 

 
Θ(n) where n is the value of a.  Assuming the input is a positive integer, 

there will be n recursive calls (until it reaches 0), and the work for 

each call is constant time. 
 

(It is important to note that it is the value not the size of a.  The 
running time is Θ(2

s
) where s is the size of a, since the maximum value 

that can be represented in s bits is 2s.) 

 
 

 
(b) Running time in MemoCharme: 

 
Θ(n).  Memoization provides no help here, since the input value is 

different for each call.  In the case where there had been previous 

evaluations, though, if mysterious is re-applied to an input value used 
previously, the running time is constant, O(1). 

 
 

 
(c) Running time in LazyCharme: 

 
Θ(n).  Lazy evaluation provides not difference here, since everything 

that is evaluated eagerly is also needed and must be evaluated lazily 
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6. 
 
(define duplicitous 

    (lambda (a) 
        (cond 

            ((> a 0) (+ (duplicitous (- a 1))  

                        (duplicitous (- a 1)))) 

            ((zero? a) 1)))) 

 

 

 

 

(a) Running time in Charme: 

 
Θ(2

n
) where n is the value of a.  Assuming the input is a positive 

integer, each evaluation of duplicitous involves two recursive calls with 

the input value reduced by one.  This means increasing the input value 

by one doubles the amount of work, so it scales exponentially in the 
input value. 

 
 

 
 

 
 
(b) Running time in MemoCharme: 

 
Θ(n) where n is the value of a.  There are still two recursive calls, but 

the value of whichever one is evaluated second is already memoized, 

so the second call requires only constant time.  Evaluating the first call 
is Θ(n) since it requires n calls to reach the base case. 

 
 

 
(c) Running time in LazyCharme: 

 
Θ(2

n
) where n is the value of a.  Lazy evaluation does not help here 

since everything that is evaluated eagerly must also be evaluated 

lazily.  Although lazy evaluation saves computed results, it saves them 
for only the particular expression that is evaluated, so it doesn’t 

matter if there are identical expressions to be evaluated elsewhere.  
This is different from memoization, where the results of applying a 

given function to particular argument values are saved. 
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7. 
 
(define temeritous 

    (lambda (a b) 
        (cond 

            ((> a 0) (temeritous (- a 1)  

                                 (temeritous (+ a 1) b))) 

            ((zero? a) 2)))) 

 

 

(a) Running time in Charme: 

 
Infinite.  An application of temeritous involves a recursive call with 

the first parameter (+ a 1).  This means the value increases with 
every call, moving away from the base case value of 0.  Hence, 

evaluation never terminates and the running time is infinite. 
 
 

 

 

 

 

(b) Running time in MemoCharme: 

 
Infinite.  Memoization provides no help here, since the input values 

keep increasing.  We are not reusing input values, so no results will be 
memorized. 

 

 
 

(c) Running time in LazyCharme: 

 
Θ(n) where n is the value of a.  Here, lazy evaluation is indeed 

temeritous (which Wikitionary defines as “Displaying disdain or 
contempt for danger”).  Since the second input to temeritous is never 

used, it is never evaluated with lazy evaluation.  The first input is 
used, and decreases by one with each recursive call, so the running 

time is linear in the value of the first input. 
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Static Type Checking 
 

8.  (as promised, Exercise 14.1) Define the typeConditional(expr, env) procedure that 

checks the type of a conditional expression.  It should check that all of the predicate expressions 

evaluate to a Boolean value.  In order for a conditional expression to be type correct, the 

consequent expressions of each clause produce values of the same type.  The type of a conditional 

expression is the type of all of the consequent expressions.  (You may assume the StaticCharme 

interpreter described in Chapter 14.) 

Here is a definition to typeConditional.  It is based on evalConditional, but 

instead of using meval, we need to use typecheck.  In addition, we need to 
check the type of the predicate and consequence of every clause. 
 

def typeConditional(expr, env): 

    assert isConditional(expr) 

    if len(expr) <= 2: 

        evalError ("Bad conditional expression: %s" % str(expr)) 

    firstclause = True 

    for clause in expr[1:]: 

        if len(clause) != 2: 

            evalError ("Bad conditional clause: %s" % \ 

                       str(clause)) 

        predicate = clause[0] 

        if not typecheck(predicate, env).matches( \ 

                      CPrimitiveType('Boolean')): 

            return CErrorType ("Non-Boolean predicate: " + \ 
                               str(predicate)) 

        consequent = clause[1] 

        if firstclause: 

            clausetype = typecheck(consequent, env) 

            firstclause = False 

        else: 
            if not typecheck(consequent, env).matches( \ 

                                                 clausetype): 

                return CErrorType ("Mistyped consequent: " + \ 

                                   str(consequent)) 

    return clausetype 
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9. (based on Exercise 14.2) A stronger type checker would require that at least one of the 

conditional predicates must evaluate to a true value.  Otherwise, the conditional expression does 

not have the required type (instead, it produces a run-time error).  Either define a 

typeConditional procedure that implements this stronger typing rule, or explain 

convincingly why it is impossible to do so. 

 

This is impossible, assuming we want our typecheck procedure to always 

terminate.  We show the At Least One True problem needed for the stronger 
type checker is undecidable by showing that an algorithm that solves it could 
be used to solve the Halting Problem.  Here’s how: 

 
(define (halts? P) 

    (at-least-one-true? 

      ‘(cond ((begin (apply-procedure P) #t) 0)))) 

 
If P halts, then the (only) clause predicate evaluates to true, and at-least-

one-true? would evaluate to true.  If P does not halt, the predicate would 
never finish evaluating, so no clause evaluates to true. 
 

Note that this result does not mean it isn’t worth trying to solve this problem.  
Indeed, many program verifiers do this.  There are programs that attempt to 

prove correctness properties of other programs.  They attempt to prove that 
at least one of the conditional expressions evaluates to true.  In some cases 
this is easy (for example, when the last predicate is the literal expression 

#t), sometimes it is possible (for example, when the first predicate is (< a 0) 
and the second predicate is (>= a 0)), and sometimes it is impossible.  For a 

program verifier to be useful, it should always terminate, but sometimes it 
will not be able to verify a correct program. 
 

Note that is it not sensible to just replace the typecheck with meval to 
attempt to find if a predicate evaluates to true.  The values of parameters 

are not known when a definition is type checked, so there is no way to 
evaluate the predicate expressions (if they involve values that are not yet 

known).   


