
1

cs205: engineering software
university of virginia fall 2006

David Evans
www.cs.virginia.edu/cs205

Substitution
Principle

2cs205: engineering software

How do we know if saying
B is a subtype of A

is safe?

Substitution Principle: If B is a
subtype of A, everywhere the code
expects an A, a B can be used instead
and the program still satisfies its
specification

3cs205: engineering software

Subtype Condition 1: Signature Rule

We can use a subtype method where
a supertype methods is expected:

– Subtype must implement all of the
supertype methods

– Argument types must not be more
restrictive

– Result type must be at least as restrictive

– Subtype method must not throw
exceptions that are not subtypes of
exceptions thrown by supertype

4cs205: engineering software

Signature Rule

class A {
public RA m (PA p) ;

}
class B extends A {

public RB m (PB p) ;
}

RB must be a subtype of RA: RB <= RA

PB must be a supertype of PA: PB >= PA

covariant for results, contravariant for parameters

5cs205: engineering software

• Precondition of the subtype method
must be weaker than the precondition
of the supertype method.

mA.pre ⇒ mB.pre

• Postcondition of the subtype method
must be stronger than the
postcondition of the supertype
method.

mB.post ⇒ mA.post

Subtype Condition 2: Methods Rule

6cs205: engineering software

public int f (a A, x X) {
// REQUIRES: a is initialized

// EFFECTS: returns a.value * x.value
return a.m (x);

}
public class A {

// An A may be initialized or uninitialized.
// An initialized A has an associated int value.
public int m (x X) {

// REQUIRES: this is initialized
} public class B extends A {

// A B may be initialized or uninitialized.
// A B may be awake or asleep.
// An initialized B has an associated int value.
public int m (x X) {

// REQUIRES: this is initialized and awake
} Can’t make the precondition

stronger! The callsite might
not satisfy it.

2

7cs205: engineering software

public int f (a A, x X) {

// REQUIRES: a is initialized
// EFFECTS: returns a.value * x.value

return a.m (x);
}

public class A {
// An A may be initialized or uninitialized.
// An initialized A has an associated int value.
public int m (x X) {

// REQUIRES: this is initialized
}

public class B extends A {
// A B may be initialized or uninitialized.
// A B may be awake or asleep.
// An initialized B has an associated int value.
public int m (x X) {

// REQUIRES: nothing
}

Okay, precondition is weaker

8cs205: engineering software

Subtypes must preserve all
properties described in the
overview specification of the
supertype.

Subtype Condition 3: Properties

9cs205: engineering software

Properties Example

public class StringSet {
// Overview: An immutable set of Strings.

public class MutStringSet extends StringSet {
// Overview: A mutable set of Strings.

MutStringSet cannot be a subtype
of StringSet, since it does not
satisfy unchangable property.

10cs205: engineering software

Properties Example

public class StringSet extends MutStringSet {
// Overview: An immutable set of Strings.

public class MutStringSet {
// Overview: A mutable set of Strings.

StringSet could be a subtype of MutStringSet
according to the properties rule.

...but couldn’t satisfy methods rule

11cs205: engineering software

Substitution Principle Summary

• Signatures: subtype methods must be type
correct in supertype callsites: result is a
subtype (covariant), parameters are
supertypes (contravariant)

• Methods: subtype preconditions must be
weaker than supertype preconditions
(covariant); subtype postconditions must be
stronger than supertype postconditions
(contravariant)

• Properties: subtype must preserve all
properties specified in supertype overview

12cs205: engineering software

Substitution Mystery
… (in client code)
MysteryType1 mt1;
MysteryType2 mt2;
MysteryType3 mt3;
… (anything could be here)
mt1 = mt2.m (mt3);

If the Java compiler accepts this code, which of these are guaranteed
to be true:

a. The apparent type of mt2 is MysteryType2
b. At the last statement, the actual type of mt2 is MysteryType2

c. MysteryType2 has a method named m
d. The MysteryType2.m method takes a parameter of type MysteryType3

e. The MysteryType2.m method returns a subtype of MysteryType1
f. After the last statement, the actual type of mt1 is MysteryType1

3

13cs205: engineering software

… (in client code)

MysteryType1 mt1;
MysteryType2 mt2;

MysteryType3 mt3;
… (anything could be here)

mt1 = mt2.m (mt3);

a. The apparent type of mt2 is MysteryType2

b. At the last statement, the actual type of mt2 is MysteryType2

c. MysteryType2 has a method named m

d. The MysteryType2.m method takes a parameter of type MysteryType3

e. The MysteryType2.m method returns a subtype of MysteryType1

f. After the last statement, the actual type of mt1 is MysteryType1

TRUE: the apparent type is obvious from the declaration.

FALSE: we only know the actual type <= MysteryType2

TRUE

FALSE: we only know it takes a parameter >= MysteryType3

TRUE: the assignment type checking depends on this

FALSE: we only know that the actual type <= MysteryType1

14cs205: engineering software

Demystifying Subtyping

class A {
public RA m (PA p) ;

}

… (in client code)
MysteryType1 mt1;
MysteryType2 mt2;
MysteryType3 mt3;
…
mt1 = mt2.m (mt3);

RA must be a subtype of MysteryType1:
RA <= MysteryType1

MysteryType3 must be a subtype of PA:
PA >= MysteryType3

If A is MysteryType2, what do we know
about RA and PA?

15cs205: engineering software

Subtyping Rules
class A {

public RA m (PA p) ;
}
class B extends A {

public RB m (PB a);
}

… (in client code)
MysteryType1 mt1;
MysteryType2 mt2;
MysteryType3 mt3;
…
mt1 = mt2.m (mt3);

RB must be a subtype of RA: RB <= RA

PA must be a subtype of PB: PB >= PA

If B <= A, what do we know about RB and PB?

16cs205: engineering software

Substitution Principle Summary

Param Types Psub ≥ Psuper
Preconditions pre_sub ⇒ pre_super

Result Type Rsub ≤ Rsuper
Postconditions post_sub ⇒ post_super

Properties properties_sub ⇒ properties_super

contravariant
for inputs

covariant
for outputs

These properties ensure if sub is a subtype of super,
code that is correct using an object of supertype is
correct using an object of subtype.

17cs205: engineering software

Substitution Principle

Is this the only way?

18cs205: engineering software

Eiffel’s Rules

(Described in Bertrand Meyer paper out today)

4

19cs205: engineering software

Eiffel Rules

Skier
set_roommate (Skier)

Boy Girl

The types of the parameters in
the subtype method may be
subtypes of the supertype
parameters.

How can Girl override set_roomate?
set_roommate (Girl g)
set_roommate (Boy b)

Opposite of substitution
principle!

20cs205: engineering software

Substitution Principle / Eiffel
class A {

public RA m (PA p) ;
}
class B extends A {

public RB m (PB a);
}

… (in client code)
MysteryType1 mt1;
MysteryType2 mt2;
MysteryType3 mt3;
…
mt1 = mt2.m (mt3);

Substitution Principle Eiffel

Parameters Psub ≥≥≥≥ Psuper Psub ≤≤≤≤ Psuper

Preconditions pre_sub ⇒ pre_super pre_sub ⇒⇒⇒⇒ pre_super

Result Rsup ≤ Rsuper
Postconditions post_sup ⇒ post_super

21cs205: engineering software

Eiffel and I Can’t Get Up?

s: skier; g: girl; b:
boy;
s := g;
...
s.set_roommate (b);

Skier
set_roommate (Skier)

Boy Girl
set_roomate (Girl)

Meyer’s paper is all about the
contortions Eiffel needs to deal with
non-substitutable subtypes

22cs205: engineering software

Charge
Must it be assumed that
because we are engineers
beauty is not our concern,
and that while we make our
constructions robust and
durable we do not also strive
to make them elegant?

Is it not true that the
genuine conditions of
strength always comply with
the secret conditions of
harmony?

Gustav Eiffel

