

Question 10

Close vote here...luckily there are many interesting randomized graph and network algorithms...		
Impr_		
Partner Assignment Algorithms	$\mathbf{1}$	$\mathbf{1 4}$
Graph and Network Algorithms	$\mathbf{1 2}$	$\mathbf{3 7}$
Randomized Algorithms	$\mathbf{9}$	$\mathbf{3 8}$
.NET's VM	$\mathbf{5}$	$\mathbf{2 4}$
Instruction set	$\mathbf{2}$	$\mathbf{1 8}$
Review	$\mathbf{5 4}$	$\mathbf{6 4}$

Exam 2: Question 2

- In Class 16, we saw that the floating point imprecision in representing 0.1 led to an error of 0.0034 seconds per hour in the Patriot missile time calculations. What clock tick unit would maximize the error accumulated per hour? What is the error? This was the easiest question, but no one got it right!

Is this possible?

- Modern Penium ~ 4GHz
-Clock tick $=1 / 4 \mathrm{~B} s=1 / 2^{32}$
-2^{7} times faster than we need!

Question 4

- Explain two reasons why it is easier to write a garbage collector for Python than it is to write a garbage collector for C ?

Is this a good idea?

- Advantages:
- Frees up EAX for other things
- Allows longer return values
- Multiple results (Python)
- Return arrays, structures
- Disadvantages:
- Stack access can be a lot slower than registers
- If caller uses result, it probably needs to copy it into a register anyway

Sample Programs

$$
\begin{array}{ll}
x=f(a) ; & x=f(g(h(a))) \\
y=g(b) ; & \ldots \\
z=f(x+y) ; &
\end{array}
$$

Which code fragment could be faster with the new convention?

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Why use randomness?

- Avoid worst-case behavior: randomness can (probabilistically) guarantee average case behavior
- Efficient approximate solutions to intractable problems

Types of Algorithms

- Monte Carlo
- Running time bounded by input size, but answer may be wrong
- Decision problems: If there is no solution, always returns "no". If there is a solution, finds it with some probability $>=1 / 2$.
- Value problems: run for a bounded number of steps, produce an answer that is correct approximation with a bounded probability (function of number of steps)

Types of Random Algorithms

- Las Vegas
- Guaranteed to produce correct answer, but running time is probabilistic
- Atlantic City
- Running time bounded by input
- Can return either "yes" or "no" regardless of correct answer. Correct with probability $>=2 / 3$.

How could this be useful?
UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Find π

def findPi (points):
incircle $=0$
for i in range (points):
x = random.random ()
$y=$ random.random ()
if (square $(x-0.5)+$ square $(y-0.5) \backslash$
< 0.25): \# $0.25=r^{\wedge} 2$
incircle $=$ incircle +1
return 4.0 * incircle / points

Monte Carlo or Las Vegas?

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms
22

Minimum Cut Problem

- Input: an undirected, connected multigraph $G=(V, E)$
- Output: A cut (V_{1}, V_{2} where $V_{1 \mathrm{n}} \cup V_{2}=V$ and $V_{1} \cap V_{2}=\varnothing$) such that number of edges between V_{1} and V_{2} is the fewest possible.

Why might this be useful? Equivalent: fewest edges that can be removed to disconnect G.

Size of the min cut must be no larger than the smallest node degree in graph

Internet Minimum Cut

June 1999 Internet graph, Bill Cheswick
http://research.lumeta.com/ches/map/gallery/index.html
UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Analysis

- Suppose C is a minimum cut (set of edges that disconnects G)
- When we contract edge e :
- Unlikely that $e \in C$
-So, C is likely to be preserved
What is the probability a randomly choosen edge is in C ?

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Random Edge in C ?

- $|C|$ must be \leq degree of every node in G
- How many edges in G:
$|E|=$ sum of all node degrees / 2

$$
\geq n \mathrm{ICl} / 2
$$

Probability a random edge is in $\mathrm{C} \leq 2 / n$

Iteration

- How many iterations? $n-2$
- Probability for first iteration:
$\operatorname{Prob}\left(e_{1} \notin C\right) \geq 1-2 / n$
- Probability for second iteration:
$\operatorname{Prob}\left(e_{2} \notin C \mid e_{1} \notin C\right) \geq 1-2 /(n-1)$
- ...
- Probability for last iteration:
$\operatorname{Prob}\left(e_{n-2} \notin C\right) \geq 1-2 /(n-(n-2-1)) \geq 1-2 / 3$

Is this good enough?

Probability of not finding C on one trial:

$$
\leq 1-2 /\left(n^{*}(n-1)\right) \leq 1-2 / n^{2}
$$

Probability of not finding C on k trials:

$$
\leq\left[1-2 / n^{2}\right]^{k}
$$

$$
\text { If } k=c n^{2},
$$

Prob failure $\leq(1 / e)^{\text {c }}$
Recall: $\lim _{x \rightarrow \infty}(1-1 / x)^{x}=1 / e$

Probability of finding C?

$$
\begin{aligned}
& \geq(1-2 / n) *(1-2 /(n-1)) *(1-2 /(n-2)) \ldots \\
& \quad *(1-2 / 3) \\
& =(n-2 / n) *(n-3 /(n-1)) *(n-4 /(\mathbf{n}-2)) \\
& \quad * \ldots *(2 / 4) *(1 / 3) \\
& =2 /(n *(n-1))
\end{aligned}
$$

Probability of not finding C $=1-2 /\left(n^{*}(n-1)\right)$

UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

Charge

- Monday is last class: it will be mostly review if enough good review questions are sent in
- No section or Small Hall hours next week
\qquad
UVa CS216 Spring 2006 - Lecture 25: Randomized Algorithms

