
Fall 2010
UVa

David Evans

cs2220: 

Engineering 

Software

Class 24:

Garbage 

Collection

flickr cc: kiksbalayon

Menu

Memory review: Stack and Heap

Garbage Collection

Mark and Sweep

Stop and Copy

Reference Counting

Java’s Garbage Collector

Exam 2

Out Thursday, due next Tuesday

Coverage: anything in the class up to last lecture

Main Topics

Type Hierarchy: Subtyping, Inheritance, Dynamic 
Dispatch, behavioral subtyping rules, 
substitution principle 

Concurrency abstraction: multi-threading, race 
conditions, deadlocks 

Java Security: bytecode verification, code safety, 
policy enforcement

You will have 5 days for Exam 2, but it is designed to be short enough that you 

should still have plenty time to work on your projects while Exam 2 is out.

Stack and Heap Review

public class Strings {

public static void test () {

StringBuffer sb = new StringBuffer("hello"); 

}

static public void main (String args[]) {

test ();

test ();

}

}

sb java.lang.StringBuffer

“hello”

Stack Heap

When do the stack and heap look like this?

A
B

1

2
3

Stack and Heap Review

public class Strings {

public static void test () {

StringBuffer sb = new StringBuffer

("hello"); 

}

static public void main (String args[]) {

test ();

test ();

}

}

sb java.lang.StringBuffer

“hello”

Stack Heap

B

2

Garbage Heap

public class Strings {

public static void test () {

StringBuffer sb = new StringBuffer

("hello"); 

}

static public void main (String args[]) {

while (true) test ();

}

}

“hello”

Stack Heap

“hello”
“hello”
“hello”

“hello”
“hello”

“hello”
“hello”

“hello”“hello”

“hello”

“hello”

“hello”

“hello”

“hello”
“hello”

“hello”

“hello”
“hello” “hello” “hello”

“hello”

“hello”
“hello”

“hello”

“hello”

“hello”

“hello”



Explicit Memory Management

public class Strings {

public static void test () {

StringBuffer sb = 

new StringBuffer ("hello"); 

free (sb);

}

static public void main (String args[]) {

while (true) test ();

}

}

C/C++: programmer uses

free (pointer)  

to indicate that the storage 

pointer points to should be 

reclaimed.

Very painful!

Missing free: memory leak

Dangling references: to free’d objects

Garbage Collection

System needs to reclaim storage on the heap

used by garbage objects

How can it identify garbage objects?

How come we don’t need to garbage collect the 

stack?

Mark 

and 

Sweep

Mark and Sweep

John McCarthy, 1960 (first LISP implementation)

Start with a set of root references

Mark every object you can reach from those 

references

Sweep up the unmarked objects

In a Java execution, what are the root references?

References on the stack.

public class Phylogeny {

static public void main (String args[]) {

SpeciesSet ss = new SpeciesSet ();

… (open file for reading) 

while (…not end of file…) {

Species current = new Species (…name from file…, 

…genome from file…);

ss.insert (current);

}

}

public class SpeciesSet { 

private ArrayList<Species> els; 

public void insert (Species s) {

if (getIndex (s) < 0) els.add (s); 

} 

}

Stack

Top of Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

current: Species

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

S
p

e
cie

sS
e

t.in
se

r t

this: SpeciesSet

s: Species

public class Phylogeny {

static public void main (String args[]) {

SpeciesSet ss = new SpeciesSet ();

… (open file for reading) 

while (…not end of file…) {

Species current = new Species (…name from file…, …genome from file…);

ss.insert (current); } }

public class SpeciesSet { 

private ArrayList<Species> els; 

public void insert (Species s) { if (getIndex (s) < 0) els.add (s); }  }



Stack

Top of Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

current: Species

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

S
p

e
cie

sS
e

t.in
se

r t

this: SpeciesSet

s: Species

After els.add (s)…

public class Phylogeny {

static public void main (String args[]) {

SpeciesSet ss = new SpeciesSet ();

… (open file for reading) 

while (…not end of file…) {

Species current = new Species (…name from file…, …genome from file…);

ss.insert (current); } }

public class SpeciesSet { 

private ArrayList<Species> els; 

public void insert (Species s) { if (getIndex (s) < 0) els.add (s); }  }

Stack

Top of Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

current: Species

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

S
p

e
cie

sS
e

t.in
se

r t

this: SpeciesSet

s: Species

SpeciesSet.insert returns…

public class Phylogeny {

static public void main (String args[]) {

SpeciesSet ss = new SpeciesSet ();

… (open file for reading) 

while (…not end of file…) {

Species current = new Species (…name from file…, …genome from file…);

ss.insert (current); } }

public class SpeciesSet { 

private ArrayList<Species> els; 

public void insert (Species s) { if (getIndex (s) < 0) els.add (s); }  }

Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

current: Species

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

Finish while loop…

Top of Stack

public class Phylogeny {

static public void main (String args[]) {

SpeciesSet ss = new SpeciesSet ();

… (open file for reading) 

while (…not end of file…) {

Species current = new Species (…name from file…, …genome from file…);

ss.insert (current); } }

public class SpeciesSet { 

private ArrayList<Species> els; 

public void insert (Species s) { if (getIndex (s) < 0) els.add (s); }  }

Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

Garbage Collection

Top of Stack

public class Phylogeny {

static public void main (String args[]) {

SpeciesSet ss = new SpeciesSet ();

… (open file for reading) 

while (…not end of file…) {

Species current = new Species (…name from file…, …genome from file…);

ss.insert (current); } }

public class SpeciesSet { 

private ArrayList<Species> els; 

public void insert (Species s) { if (getIndex (s) < 0) els.add (s); }  }

Mark and Sweep Algorithm Mark and Sweep Algorithm

active = all objects on stack

while (!active.isEmpty ()) 

newactive = { }

foreach (Object a in active) 

mark a as reachable (non-garbage)

foreach (Object o that a points to) 

if o is not marked

newactive = newactive U { o }

active = newactive



Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

Garbage Collection

Top of Stack

Initialize Mark and Sweeper:

active = all objects on stack

Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

Garbage Collection

Top of Stack

active = all objects on stack

while (!active.isEmpty ()) 

newactive = { }

foreach (Object a in active) 

mark a as reachable (non-garbage)

foreach (Object o that a points to) 

if o is not marked

newactive = newactive U { o }

active = newactive

Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

Garbage Collection

Top of Stack

active = all objects on stack

while (!active.isEmpty ()) 

newactive = { }

foreach (Object a in active) 

mark a as reachable (non-garbage)

foreach (Object o that a points to) 

if o is not marked

newactive = newactive U { o }

active = newactive

Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

Garbage Collection

Top of Stack

active = all objects on stack

while (!active.isEmpty ()) 

newactive = { }

foreach (Object a in active) 

mark a as reachable (non-garbage)

foreach (Object o that a points to) 

if o is not marked

newactive = newactive U { o }

active = newactive

Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

Garbage Collection

Top of Stack

active = all objects on stack

while (!active.isEmpty ()) 

newactive = { }

foreach (Object a in active) 

mark a as reachable (non-garbage)

foreach (Object o that a points to) 

if o is not marked

newactive = newactive U { o }

active = newactive

Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

Garbage Collection

Top of Stack

active = all objects on stack

while (!active.isEmpty ()) 

newactive = { }

foreach (Object a in active) 

mark a as reachable (non-garbage)

foreach (Object o that a points to) 

if o is not marked

newactive = newactive U { o }

active = newactive



Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

Garbage Collection

Top of Stack

active = all objects on stack

while (!active.isEmpty ()) 

newactive = { }

foreach (Object a in active) 

mark a as reachable (non-garbage)

foreach (Object o that a points to) 

if o is not marked

newactive = newactive U { o }

active = newactive

sweep () // remove unmarked objects on heap

Stack

Bottom of Stack

P
h

y
lo

g
e

n
y.m

a
in

“Duck”

“CATAG”

root: Species

name: 

genome:String[]: args

ss: SpeciesSet

“in.spc”

els: 

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

After main returns…

Top of Stack

active = all objects on stack

while (!active.isEmpty ()) 

newactive = { }

foreach (Object a in active) 

mark a as reachable (non-garbage)

foreach (Object o that a points to) 

if o is not marked

newactive = newactive U { o }

active = newactive

sweep () // remove unmarked objects on heap

Stack

Bottom of Stack

“Duck”

“CATAG”

name: 

genome:

“in.spc”

els: 

“Goat”

“CAGTG”

name: 

genome:

“Elf”

“CGGTG”

name: 

genome:

“Frog”

“CGATG”

name: 

genome:

Garbage Collection

Top of Stack

active = all objects on stack

while (!active.isEmpty ()) 

newactive = { }

foreach (Object a in active) 

mark a as reachable (non-garbage)

foreach (Object o that a points to) 

if o is not marked

newactive = newactive U { o }

active = newactive

sweep () // remove unmarked objects on heap

Problems with Mark and Sweep

Fragmentation: free space and alive objects will 
be mixed

– Harder to allocate space for new objects

– Poor locality means bad memory performance

• Caches make it quick to load nearby memory

Multiple Threads

One stack per thread, one heap shared by all 
threads

All threads must stop for garbage collection

Stop and Copy

Stop execution

Identify all reachable objects (as in Mark and Sweep)

Copy all reachable objects to a new memory area

After copying, reclaim the whole old heap

• Solves fragmentation problem

• Disadvantages:
– More complicated: need to change stack and internal 

object pointers to new heap

– Need to save enough memory to copy 

– Expensive if most objects are not garbage

Generational Collectors

Observation:

– Most objects are short-lived 

• Temporary objects that get garbage collected right away

– Other objects are long-lived

• Data that lives for the duration of execution

Separate storage into regions

Short term: collect frequently

Long term: collect infrequently

Stop and copy, but move copies into longer-lived areas



Reference Counting

What if each object kept track of the number 

of references to it?

If the object has zero references, it is garbage!

Reference Counting
class Recycle {

private String name; private Vector pals;

public Recycle (String name) { this.name = name; pals = new Vector (); }

public void addPal (Recycle r) {  pals.addElement (r); }

}

public class Garbage {

static public void main (String args[]) {

Recycle alice = new Recycle ("alice");

Recycle bob = new Recycle ("bob");

bob.addPal (alice);

alice = new Recycle ("coleen");

bob = new Recycle ("dave");

} 

}

“Alice”

name:

pals:

refs: 1

“Bob”

name:

pals:

refs: 1

2

Reference Counting
class Recycle {

private String name; private Vector pals;

public Recycle (String name) { this.name = name; pals = new Vector (); }

public void addPal (Recycle r) {  pals.addElement (r); }

}

public class Garbage {

static public void main (String args[]) {

Recycle alice = new Recycle ("alice");

Recycle bob = new Recycle ("bob");

bob.addPal (alice);

alice = new Recycle ("coleen");

bob = new Recycle ("dave");

} 

}

“Alice”

name:

pals:

refs: 1

“Bob”

name:

pals:

refs: 1

2

“Coleen”

name:

pals:

refs: 1

Reference Counting
class Recycle {

private String name; private Vector pals;

public Recycle (String name) { this.name = name; pals = new Vector (); }

public void addPal (Recycle r) {  pals.addElement (r); }

}

public class Garbage {

static public void main (String args[]) {

Recycle alice = new Recycle ("alice");

Recycle bob = new Recycle ("bob");

bob.addPal (alice);

alice = new Recycle ("coleen");

bob = new Recycle ("dave");

} 

}

“Alice”

name:

pals:

refs: 1

“Bob”

name:

pals:

refs: 10

0

Can reference counting ever fail to 

reclaim unreachable storage?

Circular References
class Recycle {

private String name; private Vector pals;

public Recycle (String name) { this.name = name; pals = new Vector (); }

public void addPal (Recycle r) {  pals.addElement (r); }

}

public class Garbage {

static public void main (String args[]) {

Recycle alice = new Recycle ("alice");

Recycle bob = new Recycle ("bob");

bob.addPal (alice);

alice.addPal (bob);

alice = null; 

bob = null;

} 

}

“Alice”

name:

pals:

refs: 1

“Bob”

name:

pals:

refs: 1



Reference Counting Summary

Advantages

Can clean up garbage right away when the last 
reference is lost

No need to stop other threads!

Disadvantages

Need to store and maintain reference count

Some garbage is left to fester (circular references)

Memory fragmentation

Java’s Garbage Collector

Mark and Sweep collector

Generational

Can call garbage collector directly: System.gc ()

but, this should hardly ever be done (except 

for “fun”)

Python’s Garbage Collector

Reference counting: 

To quickly reclaim most storage

Mark and sweep collector (optional, but on by default):

To collect circular references

java.lang.Object.finalize()
protected void finalize() throws Throwable

Called by the garbage collector on an object when garbage collection determines that there are no more 

references to the object. A subclass overrides the finalize method to dispose of system resources or to perform 

other cleanup. The general contract of finalize is that it is invoked if and when the JavaTM virtual machine has 

determined that there is no longer any means by which this object can be accessed by any thread that has not yet 

died, except as a result of an action taken by the finalization of some other object or class which is ready to be 

finalized. The finalize method may take any action, including making this object available again to other threads; the 

usual purpose of finalize, however, is to perform cleanup actions before the object is irrevocably discarded. For 

example, the finalize method for an object that represents an input/output connection might perform explicit I/O 

transactions to break the connection before the object is permanently discarded. 

The finalize method of class Object performs no special action; it simply returns normally. Subclasses of Object may 

override this definition. 

The Java programming language does not guarantee which thread will invoke the finalize method for any given 

object. It is guaranteed, however, that the thread that invokes finalize will not be holding any user-visible 

synchronization locks when finalize is invoked. If an uncaught exception is thrown by the finalize method, the 

exception is ignored and finalization of that object terminates. 

After the finalize method has been invoked for an object, no further action is taken until the Java virtual machine 

has again determined that there is no longer any means by which this object can be accessed by any thread that 

has not yet died, including possible actions by other objects or classes which are ready to be finalized, at which 

point the object may be discarded. 

The finalize method is never invoked more than once by a Java virtual machine for any given object. 

Any exception thrown by the finalize method causes the finalization of this object to be halted, but is otherwise 

ignored. 

Summary:

finalize is called when garbage collector reclaims object

no guarantee when it will be called

after finalizer, JVM has to check you didn’t do something stupid

its protected because subclasses need to override it (but no one  

other than the JVM itself should ever call it!)

You should probably never need to 

override finalize in your code.  Only 

excuse for using it is if you have 

objects with unknown lifetimes that 

have associated (non-memory) 

resources.

class Recycle {

private String name; 

private ArrayList<Recycle> pals;

public Recycle (String name) { 

this.name = name; pals = new ArrayList<Recycle> (); }

public void addPal (Recycle r) {  pals.add (r); }

protected void finalize () { System.err.println (name + " is garbage!"); }

}

public class Garbage {

static public void main (String args[]) {

Recycle alice = new Recycle ("alice");

Recycle bob = new Recycle ("bob");

bob.addPal (alice);

alice = new Recycle ("coleen");

System.out.println("First collection:");

System.gc ();

bob = new Recycle ("dave");

System.out.println("Second collection:");

System.gc ();

} 

}

> java Garbage

First collection:

Second collection:

alice is garbage!

bob is garbage!

class Recycle {

private String name; 

private ArrayList<Recycle> pals;

public Recycle (String name) { this.name = name; pals = new ArrayList<Recycle> (); }

public void addPal (Recycle r) {  pals.add (r); }

protected void finalize () { System.err.println (name + " is garbage!"); }

}

public class Garbage {

static public void main (String args[]) {

System.err.println(Runtime.getRuntime().freeMemory() + " bytes free!");    

Recycle alice = new Recycle ("alice");

Recycle bob = new Recycle ("bob");

bob.addPal (alice);

alice = new Recycle ("coleen");

System.err.println("First collection:");

System.err.println(Runtime.getRuntime().freeMemory() + " bytes free!");

System.gc ();

System.err.println(Runtime.getRuntime().freeMemory() + " bytes free!");

bob = new Recycle ("dave");

System.err.println("Second collection:");

System.gc ();

System.err.println(Runtime.getRuntime().freeMemory() + " bytes free!");

} 

}

125431952 bytes free!

First collection:

125431952 bytes free!

125933456 bytes free!

Second collection:

125933216 bytes free!

bob is garbage!

alice is garbage!Note running the garbage 

collector itself uses memory!

class Recycle {

private String name; 

private ArrayList<Recycle> pals;

public Recycle (String name) { 

this.name = name; pals = new ArrayList<Recycle> (); }

public void addPal (Recycle r) {  pals.add (r); }

protected void finalize () { 

Garbage.truck = this; 

System.err.println (name + " is garbage!" + this.hashCode()); }

}

public class Garbage {

static public Recycle truck;

static public void main (String args[]) {

printMemory();

while (true) {

Recycle alice = new Recycle ("alice");

printMemory();

System.gc ();

}

}

}



Charge

In Java: be happy you have 
a garbage collector to 
clean up for you

In C/C++: need to 
deallocate storage 
explicitly

Why is it hard to write a 
garbage collector for C? 

In the real world: clean up 
after yourself and 
others!

Garbage Collectors
(COAX, Seoul, 18 June 2002)

Keep working on your projects

Exam 2 out Thursday


