
Fall 2010
UVa

David Evans

cs2220:

Engineering

Software

Class 25:

Software

Disasters

Why Study

Software Disasters?

Exam 2 out today, due at beginning of class Thursday.

It should not be a disaster!

//

// Copyright (c) Microsoft Corporation. All rights reserved.

//

//

// Use of this source code is subject to the terms of the Microsoft end-user

// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.

// If you did not accept the terms of the EULA, you are not authorized to use

// this source code. For a copy of the EULA, please see the LICENSE.RTF on your

// install media.

//

//--

//

// Copyright (C) 2004-2007, Freescale Semiconductor, Inc. All Rights Reserved.

// THIS SOURCE CODE, AND ITS USE AND DISTRIBUTION, IS SUBJECT TO THE TERMS

// AND CONDITIONS OF THE APPLICABLE LICENSE AGREEMENT

//

//--

//

// Module: rtc.c

//

// PQOAL Real-time clock (RTC) routines for the MC13783 PMIC RTC.

//

//--

http://pastie.org/349916

//--

// Global Variables

//These macro define some default information of RTC

#define ORIGINYEAR 1980 // the begin year

#define MAXYEAR (ORIGINYEAR + 100) // the maxium year

#define JAN1WEEK 2 // Jan 1 1980 is a Tuesday

static const UINT8 monthtable[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

static const UINT8 monthtable_leap[12] = {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

…

//--

//

// Function: IsLeapYear

//

// Local helper function checks if the year is a leap year

//

// Parameters:

//

// Returns:

//

//

//--

static int IsLeapYear(int Year)

{

int Leap;

Leap = 0;

if ((Year % 4) == 0) {

Leap = 1;

if ((Year % 100) == 0) {

Leap = (Year%400) ? 0 : 1;

}

}

return (Leap);

}

#define ORIGINYEAR 1980

…

// Function: ConvertDays

//

// Local helper function that split total days since Jan 1, ORIGINYEAR into

// year, month and day

//

// Parameters:

//

// Returns:

// Returns TRUE if successful, otherwise returns FALSE.

BOOL ConvertDays(UINT32 days, SYSTEMTIME* lpTime)

{

int month, year;

year = ORIGINYEAR;

while (days > 365) {

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;

year += 1;

}

} else {

days -= 365;

year += 1;

}

}

… http://pastie.org/349916

We contacted a Microsoft spokesperson, who confirmed the

issue with this official statement: "Early this morning we were

alerted by our customers that there was a widespread issue

affecting our 2006 model Zune 30GB devices (a large number of

which are still actively being used). The technical team jumped

on the problem immediately and isolated the issue: a bug in the

internal clock driver related to the way the device handles a

leap year. That being the case, the issue should be resolved over

the next 24 hours as the time change moves to January 1, 2009.

We expect the internal clock on the Zune 30GB devices will

automatically reset tomorrow (noon, GMT). By tomorrow you

should allow the battery to fully run out of power before the

unit can restart successfully then simply ensure that your device

is recharged, then turn it back on."

http://www.pcworld.com/article/156240/microsoft_says_leap_year_bug_caused_zune_failures.html

Questions about Bugs
Immediate

What is going wrong?

What is the bug?

Systemic

Is this bug a symptom of larger problems in the
software design?

Why didn’t testing catch this?

Is this bug a symptom of larger problems in the
development process, team, etc.?

In this case, the code came from Freescale, integrated into

Microsoft Project (without going through MS development process)

Therac-25

Nancy Levenson, Medical Devices: The Therac-25

http://sunnyday.mit.edu/papers/therac.pdf

Radiation Therapy

Machine

Atomic Energy of

Canada

1985-1987: gave six

patients massive

overdoses of

radiation (3 died)

Assumptions in AECL’s safety analysis:

1. Programming errors have been reduced by

extensive testing on a hardware simulator and

under field conditions on teletherapy units. Any

residual software errors are not included in the

analysis.

2. Program software does not degrade due to wear,

fatigue, or reproduction process.

3. Computer execution errors are caused by faulty

hardware components and by "soft" (random)

errors induced by alpha particles and

electromagnetic noise.

Nancy Levenson, Medical Devices: The Therac-25

http://sunnyday.mit.edu/papers/therac.pdf

Ariane 5 Movie

Ariane 5

• $500M rocket

developed by European

Space Agency

• June 4, 1996: first

launch

37s after ignition: lost

guidance

40s: exploded

Ariane 5 Inquiry Board Report (Jacques-Louis Lions):

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

Flight Control System

Inertial Reference System (SRI)

Calculates angles and velocities from on-rocket sensors (gryos,

accelerometers)

Data sent to On-Board Computer that executes flight program (controls

booster nozzles, valves)

Redundancy in design to improve reliability

Two separate computers running SRIs in parallel (same hardware and

software) – one is “hot” stand-by used if OBC detects failure in

“active” SRI

Design based on Ariane 4

Software for SRI mostly reused from Ariane 4 implementation

Number Overflow Problems

• 16-bit signed integer

– 216 = 65536 different values

(-32768 – 32767)

• Alignment code converted the horizontal
velocity (64-bit floating point value from
sensors = up to ~10308) to a 16-bit signed
integer

• Overflow produces exception (Operand Error)

Defensive Programming

“The data conversion instructions were not

protected from causing an Operand Error,

although other conversions of comparable

variables in the same place in the code were

protected.”

It has been stated to the Board that not all the conversions were

protected because a maximum workload target of 80% had been set for the SRI

computer. To determine the vulnerability of unprotected code, an analysis was

performed on every operation which could give rise to an exception, including an

Operand Error. In particular, the conversion of floating point values to integers

was analysed and operations involving seven variables were at risk of leading to

an Operand Error. This led to protection being added to four of the variables,

evidence of which appears in the Ada code. However, three of the variables were

left unprotected. No reference to justification of this decision was found directly in

the source code. Given the large amount of documentation associated with any

industrial application, the assumption, although agreed, was essentially obscured,

though not deliberately, from any external review.

The reason for the three remaining variables, including the one denoting

horizontal bias, being unprotected was that further reasoning indicated that they

were either physically limited or that there was a large margin of safety, a

reasoning which in the case of the variable BH turned out to be faulty. It is

important to note that the decision to protect certain variables but not others was

taken jointly by project partners at several contractual levels.

Although the source of the Operand Error has been identified, this in itself did

not cause the mission to fail. The specification of the exception-handling

mechanism also contributed to the failure. In the event of any kind of

exception, the system specification stated that: the failure should be indicated

on the databus, the failure context should be stored in an EEPROM memory

(which was recovered and read out for Ariane 501), and finally, the SRI

processor should be shut down.

It was the decision to cease the processor operation which finally

proved fatal. Restart is not feasible since attitude is too difficult to re-calculate

after a processor shutdown; therefore the Inertial Reference System becomes

useless. The reason behind this drastic action lies in the culture within the

Ariane programme of only addressing random hardware failures. From this

point of view exception - or error - handling mechanisms are designed for a

random hardware failure which can quite rationally be handled by a backup

system.

Java Version

public class Overflow {

public static void main (String args[]) {

int x;

double d = 5000000000.0;

x = (int) d;

System.out.println ("d = " + d + " / " + "x = " + x);

}

} d = 5.0E9 / x = 2147483647

What is 2147483647 + 1?
-2147483648

Ada Programming Language

• Developed by a 1970s US DoD effort

to create a safe, high-level, modular

programming language

• 1987-1997: All DoD software

projects required to use Ada

• Still fairly widely used in safety-

critical software

– Boeing 777

– SPARK/Ada (subset with verification)

Ada Package Declaration

package Rational_Numbers is

type Rational is

record

Numerator : Integer;

Denominator : Positive;

end record;

function "="(X,Y : Rational) return Boolean;

function "/" (X,Y : Integer) return Rational;

function "+" (X,Y : Rational) return Rational;

function "-" (X,Y : Rational) return Rational;

function "*" (X,Y : Rational) return Rational;

function "/" (X,Y : Rational) return Rational;

end Rational_Numbers;

Type safety and information hiding are valuable: Ada code

has 1/10th as many bugs as C code, and cost ½ as much to

develop

Zeigler, 1995 http://www.adaic.com/whyada/ada-vs-c/cada_art.html

Ada Exception Handling

begin

... --- raises exception

end

exception

when Exception: action

If exception raised in block B

If there is a handler, jumps to its action; if not,

exception propagates to call site (and up)

Inertial Reference System

• Exception in alignment code for number

conversion

• No handler in procedure

• Propagated up to top level

• SRI response to exception is to shutdown and

put error on databus

Why was the alignment code still running?

The error occurred in a part of the software that

only performs alignment of the strap-down

inertial platform. This software module

computes meaningful results only before lift-off.

As soon as the launcher lifts off, this function

serves no purpose.

p. 36 (appendix of report)

The original requirement accounting for the continued operation of the

alignment software after lift-off was brought forward more than 10 years ago for

the earlier models of Ariane, in order to cope with the rather unlikely event of a

hold in the count-down e.g. between - 9 seconds, when flight mode starts in the

SRI of Ariane 4, and - 5 seconds when certain events are initiated in the launcher

which take several hours to reset. The period selected for this continued

alignment operation, 50 seconds after the start of flight mode, was based on the

time needed for the ground equipment to resume full control of the launcher in

the event of a hold. This special feature made it possible with the earlier

versions of Ariane, to restart the count-down without waiting for normal

alignment, which takes 45 minutes or more, so that a short launch window could

still be used. In fact, this feature was used once, in 1989 on Flight 33.

The same requirement does not apply to Ariane 5, which has a

different preparation sequence and it was maintained for commonality reasons,

presumably based on the view that, unless proven necessary, it was not wise to

make changes in software which worked well on Ariane 4.

Why didn’t testing find this?

What was the real

problem?

What are the lessons?

Recommendations

Bertrand Meyer’s Analysis

http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html

“Reuse without a contract is sheer folly!

Without a precise specification attached to

each reusable component -- precondition,

postcondition, invariant -- no one can trust

a supposedly reusable component.”

Ken Garlington’s Critique

• Design contracts unlikely to solve this

problem:

– Specification would need to correctly identify

precondition

– Code review would need to correctly notice

unsatisfied precondition

– Or, run-time handler would need to recover

correctly

http://home.flash.net/~kennieg/ariane.html

Charge

• Avoid a software disaster for your projects

– Coordinate with your team closely: all your code

should be working together now

– Make sure simple things work before implementing

“fancy features”

• Subscribe to RISKS to get a regular reminder of

software disasters: http://catless.ncl.ac.uk/Risks

Exam 2 is out now, due at beginning of class Tuesday

(it should not be a software disaster either!)

