€s2220:
Engineering
Software

Class 25:
Software
Disasters

Fall 2010
UVa
David Evans

Why Study
Software Disasters?

Exam 2 out today, due at beginning of class Thursday.
It should not be a disaster!

DIGITAL PHOTO IO

Help & Tips

Shop & Compare

Crunch

About Archives Contact Advertise Jobs Reviews

» Gotatip it 1o our anonymous, top- ip line: tips@crunchgear.corf

Beat the crowds and savs
all of your holiday gifts!

52 Comments 2 Recommencatons O [Dig | 3 snareThis

30GB Zunes all over the world fail en
masse

Matt Burns on December 31 119 Comments

It seems that a random bug i affecting a bunch, if not every,
3068 Zunes. Real early this morning, 3 bunch of Zuna 308 just
stopped working. N
yet but we might h
bo

Ficial word from Redmond on
2 gadget Y2K going on here
I hav

that at 2:00 AM this
and dossn't fully ret
with angry Zuna owners as soon as the phone ines open up
for the last time in 2008. More as we get it

Microsoft Zunes spontaneously dying all over
the place

Posted on Dec 31, 2008 11:13 am by Dan Moren, Macworld.com

Oh, Danny boy. . the Zunes, the Zunes
are callng. As a sign of the impending | SMILAR ARTICLES:
apocalypse—no doub caused by the .
has descended upon scads of

Microsoft's Zune media piayers. AS of - i The
2AM this moming, Zunes around the e

World have begun to freeze wih ull
oading bars, resulting in completely
unresponsive Zunes. O, the horror!

0
K

Opinion: The iPad
stands alone

According to Gizmodo:

a
g

Right, 50 this /s a weird one: were
getting tons of reports—tons—about
falling Zune 30s. Apparenty, the
players began freezing at about
midnignt last nignt, becoming totally
unresponsive and practically useless.

// http://pastie.org/349916
// Copyright (c) Microsoft Corporation. All rights reserved.

1/

//

// Use of this source code is subject to the terms of the Microsoft end-user

// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.

// If you did not accept the terms of the EULA, you are not authorized to use

// this source code. For a copy of the EULA, please see the LICENSE.RTF on your

// install media.

// Copyright (C) 2004-2007, Freescale Semiconductor, Inc. All Rights Reserved.

// THIS SOURCE CODE, AND ITS USE AND DISTRIBUTION, IS SUBJECT TO THE TERMS
// AND CONDITIONS OF THE APPLICABLE LICENSE AGREEMENT

1/
1/
1/
// Module: rtc.c

1/

// PQOAL Real-time clock (RTC) routines for the MC13783 PMIC RTC.
//
1/

1/
// Global Variables

//These macro define some default information of RTC

#define ORIGINYEAR 1980 // the begin year

#define MAXYEAR (ORIGINYEAR + 100) // the maxium year
#define JANIWEEK 2 //Jan 1 1980 is a Tuesday

static const UINT8 monthtable[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
static const UINT8 monthtable_leap[12] = {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

//
//

// Function: IsLeapYear
//

// Local helper function checks if the year is a leap year
1 i
// Parameters: MODLPIES: /\““'"ﬂY

JRERETS " Rdyins 0 of yyor is i a Lotp o, | iy
//

Y‘c\va\

U“Q;‘r((* J(\Lev\ Y de 2

& Howe™ ‘400) %
Teap =0,

return (Leap); L‘U\P = ;'
}

#define ORIGINYEAR 1980
// Function: ConvertDays

// Local helper function that split total days since Jan 1, ORIGINYEAR into
// year, month and day
/I

// Parameters:

1/

// Returns:

// Returns TRUE if successful, otherwise returns FALSE.

BOOL ConvertDays(UINT32 days, SYSTEMTIME* IpTime)

{
int month, year; o O
yetar=0t:IGleVEAR; A \b\\/}é Ml/ 10 b
while (days > 365) { 36@ D‘(100%

if (IsLeapYear(year)) {

if (days > 366) {

days -= 366;
year +=1; 3(\] v
} Lise ‘\L '\ 0 B
Felse { (v@&eﬁl‘pa\’*'
days -= 365;
year +=1;

}
}
http://pastie.org/349916

We contacted a Microsoft spokesperson, who confirmed the
issue with this official statement: "Early this morning we were
alerted by our customers that there was a widespread issue
affecting our 2006 model Zune 30GB devices (a large number of
which are still actively being used). The technical team jumped
on the problem immediately and isolated the issue: a bug in the
internal clock driver related to the way the device handles a
leap year. That being the case, the issue should be resolved over
the next 24 hours as the time change moves to January 1, 2009.
We expect the internal clock on the Zune 30GB devices will
automatically reset tomorrow (noon, GMT). By tomorrow you
should allow the battery to fully run out of power before the
unit can restart successfully then simply ensure that your device
is recharged, then turn it back on."

http://www.pcworld.com/article/156240/microsoft_says_leap_year_bug_caused_zune_failures.html

Questions about Bugs

Immediate
What is going wrong?
What is the bug?
Systemic
Is this bug a symptom of larger problems in the
software design?
Why didn’t testing catch this?
Is this bug a symptom of larger problems in the
development process, team, etc.?

In this case, the code came from Freescale, integrated into
Microsoft Project (without going through MS development process)

Therac-25

Radiation Therapy
Machine

Atomic Energy of
Canada

1985-1987: gave six
patients massive
overdoses of
radiation (3 died)

Nancy Levenson, Medical Devices: The Therac-25
http://sunnyday.mit.edu/papers/therac.pdf

Turntable switch assembhy

Counteneight

Heray mode target

Flattener and

Suitch primany definer

actuators

Electron mode Turntable base

sean magnet

Figure B. Upper turntable assembly

Assumptions in AECL’s safety analysis:

1. Programming errors have been reduced by
extensive testing on a hardware simulator and
under field conditions on teletherapy units. Any
residual software errors are not included in the
analysis.

2. Program software does not degrade due to wear,
fatigue, or reproduction process.

3. Computer execution errors are caused by faulty
hardware components and by "soft" (random)
errors induced by alpha particles and
electromagnetic noise.

Nancy Levenson, Medical Devices: The Therac-25
http://sunnyday.mit.edu/papers/therac.pdf

Ariane 5 Movie

Ariane 5

* S500M rocket
developed by European
Space Agency

¢ June 4, 1996: first
launch

37s after ignition: lost
guidance

40s: exploded

o syt avuiLer i
L esd FLIGHT SEQUENCE nes

= Nominal flight

- iil I10 7.|050 1?' ﬂls 2|73 35|.7l
I 1 I I T I I
SRlin Vulcain Ignition of Manoeuvre End of pitch End of roll SRI
‘light mode ignition solid boosters -roll i
- pitch
= Accident
39.1s 39.8s|
3?!(315.6925 3?,749: 3;’5 3?.33 Miﬂ5l 40;55! 41 i913 42;983 66|s
1 I I I * 1 ' ' I * T
Nominal [Separation] Confirmation
Back-up SRI| SR Excessive [Loss o ng “Fireball"
oad f destruct
maltunction| | ion| SWivelling [0BC 1 mnn {of booster 2 0BC 2 "m m:";
reported
Back-up SRI Transition to Switch to m‘:‘:‘;‘:’ Loss of Loss of main
Inhibition degraded mode oBC2 g VEB telemetry stage telemetry
in stage and upper stag
of
Launchers

Ariane 5 Inquiry Board Report (Jacques-Louis Lions):
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

Flight Control System

Inertial Reference System (SRI)
Calculates angles and velocities from on-rocket sensors (gryos,
accelerometers)
Data sent to On-Board Computer that executes flight program (controls
booster nozzles, valves)
Redundancy in design to improve reliability
Two separate computers running SRls in parallel (same hardware and
software) — one is “hot” stand-by used if OBC detects failure in
“active” SRI
Design based on Ariane 4
Software for SRI mostly reused from Ariane 4 implementation

Number Overflow Problems

* 16-bit signed integer

— 2% = 65536 different values
(-32768 —32767)

* Alignment code converted the horizontal
velocity (64-bit floating point value from
sensors = up to ~103%) to a 16-bit signed
integer

* Overflow produces exception (Operand Error)

Defensive Programming

“The data conversion instructions were not
protected from causing an Operand Error,
although other conversions of comparable
variables in the same place in the code were
protected.”

It has been stated to the Board that not all the conversions were
protected because a maximum workload target of 80% had been set for the SRI
computer. To determine the vulnerability of unprotected code, an analysis was
performed on every operation which could give rise to an exception, including an
Operand Error. In particular, the conversion of floating point values to integers
was analysed and operations involving seven variables were at risk of leading to
an Operand Error. This led to protection being added to four of the variables,
evidence of which appears in the Ada code. However, three of the variables were
left unprotected. No reference to justification of this decision was found directly in
the source code. Given the large amount of documentation associated with any
industrial application, the assumption, although agreed, was essentially obscured,
though not deliberately, from any external review.

The reason for the three remaining variables, including the one denoting
horizontal bias, being unprotected was that further reasoning indicated that they
were either physically limited or that there was a large margin of safety, a
reasoning which in the case of the variable BH turned out to be faulty. It is
important to note that the decision to protect certain variables but not others was
taken jointly by project partners at several contractual levels.

Although the source of the Operand Error has been identified, this in itself did
not cause the mission to fail. The specification of the exception-handling
mechanism also contributed to the failure. In the event of any kind of
exception, the system specification stated that: the failure should be indicated
on the databus, the failure context should be stored in an EEPROM memory
(which was recovered and read out for Ariane 501), and finally, the SRI
processor should be shut down.

It was the decision to cease the processor operation which finally
proved fatal. Restart is not feasible since attitude is too difficult to re-calculate
after a processor shutdown; therefore the Inertial Reference System becomes
useless. The reason behind this drastic action lies in the culture within the
Ariane programme of only addressing random hardware failures. From this
point of view exception - or error - handling mechanisms are designed for a
random hardware failure which can quite rationally be handled by a backup
system.

Java Version

public class Overflow {
public static void main (String args[]) {
intx;
double d = 5000000000.0;

x = (int) d;
System.out.printin ("d="+d+" /" +"x="+x);

}
} d =5.0E9 /x =2147483647

What is 2147483647 + 1? -2147483648

Ada Programming Language

Developed by a 1970s US DoD effort
to create a safe, high-level, modular
programming language

1987-1997: All DoD software
projects required to use Ada

Still fairly widely used in safety-
critical software

— Boeing 777

— SPARK/Ada (subset with verification)

Ada Package Declaration

package Rational_Numbers is
type Rational is
record
Numerator : Integer;
Denominator : Positive;
end record;
function "="(X,Y : Rational) return Boolean;
function "/" (XY : Integer) return Rational;
function "+" (XY : Rational) return Rational;
function "-" (X,Y : Rational) return Rational;
function "*" (X)Y : Rational) return Rational;
function "/" (XY : Rational) return Rational;
end Rational_Numbers;

Zeigler, 1995 http://www.adaic.com/whyada/ada-vs-c/cada_art.html

Lifdime Fid d-Reported Bugs

Hc
O s

Nurnber of Reported Bugs (DRs

Critical Severe Minor

Bugs (by Iroplementation Language)

Type safety and information hiding are valuable: Ada code
has 1/10t as many bugs as C code, and cost % as much to
develop

Ada Exception Handling

begin

... --- raises exception
end
exception

when Exception: action

If exception raised in block B

If there is a handler, jumps to its action; if not,
exception propagates to call site (and up)

Inertial Reference System

Exception in alignment code for number
conversion

No handler in procedure
Propagated up to top level

SRI response to exception is to shutdown and
put error on databus

Why was the alignment code still running?

The error occurred in a part of the software that
only performs alignment of the strap-down
inertial platform. This software module
computes meaningful results only before lift-off.
As soon as the launcher lifts off, this function
serves no purpose.

>@sa INEH I 1AL HEFERENGE SVSTEM (S.R.4.) =
t@ MAIN OPERATING MODES anes

« autonomous definition of SRI
inertial reference trihedron
using gravity and earth rotation

« slow process (45 minutes)

uired X . © maintains inertial
owing to aceuracy red z reference trihedron

and computes launcher
velocity and attitude
vertical Y within this trihedron

launch azimuth

Dil of
Launchers

oNessot

p. 36 (appendix of report)

The original requirement accounting for the continued operation of the
alignment software after lift-off was brought forward more than 10 years ago for
the earlier models of Ariane, in order to cope with the rather unlikely event of a
hold in the count-down e.g. between - 9 seconds, when flight mode starts in the
SRI of Ariane 4, and - 5 seconds when certain events are initiated in the launcher
which take several hours to reset. The period selected for this continued
alignment operation, 50 seconds after the start of flight mode, was based on the
time needed for the ground equipment to resume full control of the launcher in
the event of a hold. This special feature made it possible with the earlier
versions of Ariane, to restart the count-down without waiting for normal
alignment, which takes 45 minutes or more, so that a short launch window could
still be used. In fact, this feature was used once, in 1989 on Flight 33.

The same requirement does not apply to Ariane 5, which has a
different preparation sequence and it was maintained for commonality reasons,
presumably based on the view that, unless proven necessary, it was not wise to
make changes in software which worked well on Ariane 4.

Why didn’t testing find this?

‘G‘ ocad ORiGiN OF THE MALFUNCTION (3/3) 1

= The fault could not be detected on the ground by any of the static or
environment tests performed on the SRis

= The error could have been detected in testing:

- on the software alone. A test of this kind was performed but unfortunately with
an unsuitable choice of parameter

- by simulating the Ariane 5 trajectories through electronic input to the SRI
instead of the sensors. This type of simulation was performed at launcher level,
but without actual SRI equipment

of

What was the real
problem?

Launchers CNESS01
e CSd CONCLUSIONS C
‘ anes
= Software design errors:
- maintenance after lift-off of pre-I h ion i patible with flight
- saturation of capacity to represent a variable
- of p on of i
= Not detected:
- BY the series of tests and reviews carried out under the programme, which
the eries oviews cared out undot he programme, What are the lessons?
corrections)
- WHY - ground / flight functional interface (different reactions required)
- tests at equipment and system levels not suffficiently representative
= The system architecture is not implicated
of
Launchers CNESsO!
e esa : MEAS g
H RRECTIVE MEASURES
Recommendations e " anes
Specific measures
L©eoesa ONBOARD SOFTWARE (cont'd) v cnes = Correction of the problem in the SRI that led to the accident

FPROG 2 Update A5-DF-1-X-04 (flight control algorithm definition file),
identify any superfluous functions and then check for
consistency with the flight programme technical specification

The update concerns only the consistency of documents. The
"algorithmic reference" is, for its part, fully in phase with the
flight software. However, verifying consistency will make it
possible to reassess whether functions are superfluous or
require simplification

FPROG 3 Study dual-failure management, without thereby changing the
original philosophy (no switchback to equif found to have
failed). The aim is to make functions after the d failure
very "tolerant”, without any definitive mission termination
whether at equipment or flight software level

= Reexamination of all e embedded in equik

= Improvement of the representativeness (vis-a-vis the launcher) of the
qualification testing environment

= Introduction of overlaps and deliberate redundancy between successive
tests:
- at equipment level
- at stage level
- at system level

= Improvement and systematisation of the two-way flow of information:

- up from equif to sy | and failure-mode behaviour
- down from system to equif use of equif items in flight
of
Launchers coNessor

cesda U1 ACGIDENT i
" CORRECTIVE MEASURES anes

SRI

= Switch-off or inhibition of alignment function after lift-off

= Analysis / modification of processing, particularly on detection of a malfunction
(no processor shutdown)

= Testing to check coverage of the SR flight domain

lifi n environ ISF at L ¥

= General improvement of representativeness through systematic use of real equipment
and p wherever p
= Simulation of real trajectories on SRl electronics

General measures
= Critical reappraisal of all software (flight program + embedded software)
= Review of i for double failures
= Improvement of facilities for acquisition and retrieval of telemetry data
= Impr of overall cool relating to software
of
Launchers onEssor

Bertrand Meyer’s Analysis

“Reuse without a contract is sheer folly!
Without a precise specification attached to
each reusable component -- precondition,
postcondition, invariant -- no one can trust
a supposedly reusable component.”

http://archive.eiffel.com/doc/manuals/technology/contract/ariane/page.html

Ken Garlington’s Critique

* Design contracts unlikely to solve this
problem:

— Specification would need to correctly identify
precondition

— Code review would need to correctly notice
unsatisfied precondition

— Or, run-time handler would need to recover
correctly

http://home.flash.net/~kennieg/ariane.html

Charge

* Avoid a software disaster for your projects

— Coordinate with your team closely: all your code
should be working together now

— Make sure simple things work before implementing
“fancy features”

* Subscribe to RISKS to get a regular reminder of
software disasters: http://catless.ncl.ac.uk/Risks

Exam 2 is out now, due at beginning of class Tuesday

(it should not be a software disaster either!)

