
Fall 2010
UVa

David Evans

cs2220:

Engineering

Software

Class 27:

Exam 2

Menu

• Exam 2

• Parenthesizing the Expression

SimObject

PlaceMobileSimObject

Classroom

Building

Office
Student Professor

D
e

si
g

n
 A

SimObject

MobileSimObject

Classroom

ContainerObject

OfficeStudent Professor Building

D
e

si
g

n
 B

(a) (Average 3.9/5) Describe one clear advantage of Design A over Design B.

(b) (Average 4.5/5) Describe one clear advantage of Design B over Design A.

In general, what are possible

advantages of one design over another?

SimObject

PlaceMobileSimObject

Classroom

Building

Office
Student Professor

Design A

SimObject

MobileSimObject

Classroom

ContainerObject

OfficeStudent Professor Building

Design B

SimObject

MobileSimObject

Student Professor

(c) (Average 7.7/10) Draw a better design than either Design A or Design B, and explain clearly

why your design is better.

SimObject

PlaceMobileSimObject

Classroom

Building

Office
Student Professor

SimObject

MobileSimObject

Classroom

ContainerObject

OfficeStudent Professor Building

2(a). (4.2 / 5) Does the implementation of the Annihlator destroy method satisfy its

specification? Your answer should either explain clearly why it does not, or use precise

reasoning to argue why it does.

public class Annihilator {

// OVERVIEW: An Annihilator is a mutable object that can kill and be killed by other

// objects. A typical Annihilator is state where state is either Alive, Dying, or Dead.

private int state;

// A.F.(c): if c.state = 2, Alive; if c.state = 1, Dying; if c.state = 0, Dead.

// RepInvariant(c): 0 <= c <= 2

public void destroy(Annihilator a)

// REQUIRES: a == Dying

// MODIFIES: a

// EFFECTS: a_post = Dead

{ a.state = a.state - 1; }

2(b). (3.9 / 5) Does the Obliterator destroy method satisfy the substitution principle? A good

answer will include a clear and convincing argument supporting your answer.

public class Annihilator {

// OVERVIEW: An Annihilator is a mutable object that can kill and be killed by other

// objects. A typical Annihilator is state where state is either Alive, Dying, or Dead.

public void destroy(Annihilator a)

// REQUIRES: a == Dying

// MODIFIES: a

// EFFECTS: a_post = Dead

…

}

public class Obliterator extends Annihilator {

@Override

public void destroy(Annihilator a)

// REQUIRES: a != Dead

// MODIFIES: a

// EFFECTS: a_post = Dead.

…

}

Can we really answer this without

an Overview spec for Obliterator?

2(c) (2.5 / 5) Suppose an Obliterator is always stronger than an Annihilator, so we

override the Obliterator pickStronger method as:

@Override

public Obliterator pickStronger(Annihilator a)

// EFFECTS: If a is not an Obliterator, returns this. Otherwise, returns

// the stronger of this and a (or either one if they are equally strong),

// where Alive is stronger than Dying which is stronger than Dead.

{

if (a instanceof Obliterator) {

if (isAlive() || (isDying() && !a.isAlive())) { return this; }

else { return (Obliterator) a; }

} else {

return this;

}

}

Note that we have not provided a specification for the Annihilator pickStrong

method. Could the Obliterator pickStrong method satisfy the substitution

principle?

Easiest answer:

public Annihilator pickStronger(Annihilator)

// REQUIRES: true

// MODIFIES: anything (nothing works too)

// ENSURES: nothing

2(d) (challenge bonus) (+2; max +8) Note that our pickStronger comparisons are

now not symmetric: a.pickStronger(b) is not necessarily equal to b.pickStronger(a).

Explain a general solution to this problem. For maximum bonus, your answer

should include correct code for your solution and an argument why it satisfies the

symmetry property, clearly stating any assumptions on which that argument relies.

Note: general solution means it needs to work for all possible subtypes!

public Annihilator pickStronger(Annihilator a) {

}

What do we know about the

actual types of this and a?

2(d) (challenge bonus) (+2; max +8) Note that our pickStronger comparisons are

now not symmetric: a.pickStronger(b) is not necessarily equal to b.pickStronger(a).

Explain a general solution to this problem. For maximum bonus, your answer

should include correct code for your solution and an argument why it satisfies the

symmetry property, clearly stating any assumptions on which that argument relies.

Note: general solution means it needs to work for all possible subtypes!

public Annihilator pickStronger(Annihilator a) {

if (?) { // something that always is symmetric!

return a.pickStronger(this);

} else {

… // normal body of pickStronger

}

}

Best Idea (Jiamin Chen)

public class Annihilator {

private int state;

private final int id;

private static int counter = 0;

public Annihilator () // EFFECTS: Initializes this to Alive.

{ state = 2; id = counter; counter++; }

public Annihilator pickStronger(Annihilator a) {

if (this.counter < a.counter) { // something that always is symmetric!

return a.pickStronger(this);

} else {

… // normal body of pickStronger

}

}

} What if this.counter == a.counter?

Almost Works

public class Annihilator {

public Annihilator pickStronger(Annihilator a) {

if (hashCode() < a.hashCode()) {

return a.pickStronger(this);

} else {

… // normal body of pickStronger

}

}

}

java.lang.Object public int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of

hashtables such as those provided by java.util.Hashtable.

The general contract of hashCode is:

• Whenever it is invoked on the same object more than once during an execution of a Java

application, the hashCode method must consistently return the same integer, provided no

information used in equals comparisons on the object is modified. This integer need not

remain consistent from one execution of an application to another execution of the same

application.

• If two objects are equal according to the equals(Object) method, then calling the hashCode

method on each of the two objects must produce the same integer result.

• It is not required that if two objects are unequal according to the equals(java.lang.Object)

method, then calling the hashCode method on each of the two objects must produce

distinct integer results. However, the programmer should be aware that producing distinct

integer results for unequal objects may improve the performance of hashtables.

As much as is reasonably practical, the hashCode method defined by class Object does

return distinct integers for distinct objects. (This is typically implemented by converting the

internal address of the object into an integer, but this implementation technique is not

required by the JavaTM programming language.)

3. Our philosophers from PS5 have decided that is it not natural or efficient to only

argue with one other philosopher at a time. Instead, they should be able to argue

with as many other philosophers as they want at once. The philosophers sit around a

table (represented by the Table class), and take turns making their argument. It has

the problem though, that philosophers will interrupt each other’s argument. …

(a) (6.7 / 10) Explain how to modify the code to prevent this race condition.

Your solution to not introduce any deadlocks in the code. For this part, ignore what

happens when the philosopher wins enough points to leave the game.)

public boolean philosophize () {

say("My turn!");

for (Philosopher p : colleagues) {

say(p.getName() + ", you are wrong! " + quote);

points++;

if (points > 20) {

…

}

}

say("Okay, I'm done.");

return true;

}

Locks, Threads, and Objects

Every Object has an associated lock

A lock is held by a Thread

(not by an Object or Class!)

Possible Answer #1

public boolean philosophize () {

synchronize (this) {

say("My turn!");

for (Philosopher p : colleagues) {

say(p.getName() + ", you are wrong! " + quote);

points++;

if (points > 20) {

…

}

}

say("Okay, I'm done.");

return true;

}

}

Wrong Answer #2

public boolean philosophize () {

say("My turn!");

for (Philosopher p : colleagues) {

synchronize (p) {

say(p.getName() + ", you are wrong! " + quote);

points++;

if (points > 20) {

…

}

}

}

say("Okay, I'm done.");

return true;

}

}

Wrong Answer #3
public class Philosopher {

private ArrayList<Philosopher> colleagues;

…

public boolean philosophize () {

synchronize (colleagues) {

say("My turn!");

for (Philosopher p : colleagues) {

say(p.getName() + ", you are wrong! " + quote);

points++;

if (points > 20) {

…

}

}

say("Okay, I'm done.");

return true;

}

}

}

Is it possible to lock all the colleagues?

Left as a challenge question…

solution will give +30 points

on Exam 2

(Almost) Correct Answer

public class Philosopher {

private Table table;

…

// REQUIRES: p must be at the same table as this.

// …

public synchronized void addColleague(Philosopher p) { … }

public boolean philosophize () {

synchronize (table) {
say("My turn!");

for (Philosopher p : colleagues) {

say(p.getName() + ", you are wrong! " + quote);

points++;

if (points > 20) {

…

}

}

say("Okay, I'm done.");

return true;

}

}

}

class Table {

// OVERVIEW: A Table is a place

// where philosophers argue.

}

Correct Answer?
public class Philosopher {

private Table table;

…

// REQUIRES: p must be at the same table as this.

// …

public synchronized void addColleague(Philosopher p) { … }

public boolean philosophize () {

synchronize (this) {

synchronize (table) {
say("My turn!");

for (Philosopher p : colleagues) {

say(p.getName() + ", you are wrong! " + quote);

points++;

if (points > 20) {

…

}

}

say("Okay, I'm done.");

return true;

}

} }

}

class Table {

// OVERVIEW: A Table is a place

// where philosophers argue.

}

Fully Correct Answer
public class Philosopher {

private Table table;

…

// REQUIRES: p must be at the same table as this.

// …

public synchronized void addColleague(Philosopher p) { … }

public boolean philosophize () {

synchronize (table) {

synchronize (this) {
say("My turn!");

for (Philosopher p : colleagues) {

say(p.getName() + ", you are wrong! " + quote);

points++;

if (points > 20) {

…

}

}

say("Okay, I'm done.");

return true;

}

} }

}

class Table {

// OVERVIEW: A Table is a place

// where philosophers argue.

}

3(b) (6.8 / 10) Are there any deadlocks or race conditions in

leaveTable? If so, explain how to fix them. If not, explain why not.

public void goodbye(Philosopher p) {

say("Goodbye " + p.getName());

colleagues.remove(p);

}

public void leaveTable() {

for (Philosopher p : colleagues) {

p.goodbye(this);

}

colleagues = null;

table = null;

}

4. As mentioned in Class 17, Barbara Liskov identified four main

problems with Simula that motivated the design of CLU (from

Barbara Liskov, A History of CLU, 1992). For each item below, explain

how well the design of Java addresses the identified problem.

Especially good answers will use concrete examples to show how the

problem she identified either still exists in Java or has been avoided

by Java.

(a) (4.3 / 5) “Simula did not support encapsulation, so its classes

could be used as a data abstraction mechanism only if programmers

obeyed rules not enforced by the language.”

Encapsulation The hiding of implementation details so that they are

inaccessible outside of the module providing the implementation.

(Liskov’s definition from textbook)

Encapsulation Packaging state with procedures.

(roughly, cs1120 definition)

4(b). (3.4 / 5) Simula associated operations with

objects, not with types.

Dyadic operators: 3 + 4

a equals b

Smalltalk: 3.add(4)

a.equals(b)

Java: 3 + 4 (operators for primitive types only)

a.equals(b)

CLU: math$add(a, b)

Object$equals(a, b)

Why is this a problem?

2(d) (challenge bonus) (+2; max +8) Note that our pickStronger comparisons are

now not symmetric: a.pickStronger(b) is not necessarily equal to b.pickStronger(a).

Explain a general solution to this problem. For maximum bonus, your answer

should include correct code for your solution and an argument why it satisfies the

symmetry property, clearly stating any assumptions on which that argument relies.

Note: general solution means it needs to work for all possible subtypes!

public Annihilator pickStronger(Annihilator a) {

if (?) { // something that always is symmetric!

return a.pickStronger(this);

} else {

… // normal body of pickStronger

}

}

Java (Sort-Of) Solution

Static methods:

method associated with Class, not Object

static public Annihilator pickStronger(Annihilator a, Annihlator b) {

…

}

Does this solve the problem with subtyping?

Annihilator.pickStronger(a, b);

a.pickStronger(a, b);

b.pickStronger(a, b);

4(c). (3.7 / 5) Simula “treated built-in and user-defined types non-

uniformly. Objects of user-defined types had to reside in the heap, but

objects of built-in type could be in either the stack or the heap.”

Java still treats primitive types and Object types differently!

Exam Recap

• Exam questions meant to test:

– Do you understand specifications and how to

reason about procedures and data types

– Do you understand subtyping and inheritance

– Do you understand concurrency (locks, race

conditions, deadlocks)

– Do you understand tradeoffs between

expressiveness and truthiness

Your oral final exam will give you one last chance to convince me

the answer to all these questions is “Yes”. Some of the questions

will probably be based directly on things from this exam.

Parenthesizing Question

Given an arithmetic expression involving

addition, subtraction, and multiplication of

natural numbers, add parentheses to

maximize the value of the expression.

