Lecture 2:

Perfect Ciphers

(in Theory, not Practice)
Shannon was the person who saw that the binary digit was the fundamental element in all of communication. That was really his discovery, and from it the whole communications revolution has sprung. R G Gallager

I just wondered how things were put together.
Claude Shannon
CS588: Cryptology
University of Virginia Computer Science

Survey Results

- Forged email: 7 out of 34
- Broken into systems: 5 out of 34
- All socially responsible, of course
- Victim: 10 out of 34
"hopefully not, but if they did a good job I probably would never have noticed it."
- Movies/Books: Sneakers (10 - "should be required for the course"), Cryptonomicon (5), Hackers (3), Matrix (2), Mercury Rising (2), Crypto (2), Takedown, Enemy of the State, Cuckoo's Egg, Maximum Security, The Net, Dr.
Strangelove, Office Space, "Swordfish was really really bad"
3Sep $2001 \quad 3$

Last Time

- Big keyspace is not necessarily a strong cipher
- Claim: One-Time Pad is perfect cipher
- In theory: depends on perfectly random key, secure key distribution, no reuse
- In practice: usually ineffective (VENONA, Lorenz Machine)
- Today: what does is mean to be a perfect cipher?

3 Sep 2001
University of Virginia CS 588
5

- SSL, PGP, RSA
- Network and web security, ecommerce
- Quantum Computing
- Banks, ATMs
- "All the NSA secrets"

Survey: Requested Topics

Claude Shannon

- Master's Thesis [1938] boolean algebra in electronic circuits
- "Mathematical Theory of Communication" [1948] - established information theory
- "Communication Theory of Secrecy Systems" [1945/1949] (linked from manifest)
- Invented rocket-powered Frisbee, could juggle four balls while riding unicycle

3 Sep 2001
University of Virginia CS 588

Entropy

Amount of information in a message
$\mathrm{H}(\mathrm{M})=-\Sigma \mathrm{P}\left(M_{\mathrm{i}}\right) \log \mathrm{P}\left(M_{\mathrm{i}}\right)$
over all possible messages M_{i}
If there are n equally probable messages,
$H(M)=-\Sigma 1 / n \log 1 / n$
$=-\left(n^{*}(1 / n \log 1 / n)\right)$
$=-(1 \log 1 / n)=\log n$
Base of \log is alphabet size, so for binary: $\mathrm{H}(\mathrm{M})=\log _{2} n$
where n is the number of possible meanings

Entropy Example

$M=$ months of the year
$H(M)=$
$=\log _{2} 12 \approx 3.6$ (need 4 bits to encode a year)

Rate of English

- r (English) is about . 28 letters/letter (1.3 bits/letter)
- How do we get this?
- How many meaningful 20 -letter messages in English?
$\mathrm{r}=\mathrm{H}(M) / N$
$.28=\mathrm{H}(M) / 20$
$\mathrm{H}(M)=5.6=\log _{26} n$
$n=26^{5.6} \sim 83$ million (of $2 * 10^{28}$ possible)
Probability that 20 -letters are sensible English is
About 1 in 2 * 10^{20}
3 Sep 2001
University of Virginia CS 588

Rate

- Absolute rate: how much information can be encoded
$\mathrm{R}=\log _{2} Z \quad$ (Z=size of alphabet)
$R_{\text {English }}=\log _{2} 26 \approx 4.7$ bits / letter
- Actual rate of a language:

$$
\mathrm{r}=\mathrm{H}(M) / N
$$

M is an N-letter message.
r of months spelled out using ASCII:
$=\log _{2} 12 /(8$ letters $* 8$ bits/letter) ≈ 0.06
3 Sep 2001
University of Virginia CS 588

Redundancy

- Redundancy (D) is defined:

$$
D=R-r
$$

- Redundancy in English:
$\mathrm{D}=1-.28=.72$ letters/letter
$\mathrm{D}=4.7-1.3=3.4$ bits/letter
Each letter is 1.3 bits of content, and
3.4 bits of redundancy. (~72\%)
- 7-bit ASCII
$\mathrm{D}=7-1.3=5.7$
81% redundancy, 19% information
3 Sep 2001
University of Virginia CS 588

Unicity Distance

- Entropy of cryptosystem: (K = number of possible keys)
$\mathrm{H}(K)=\log _{\text {Alphabet Size }} K$
if all keys equally likely
$\mathrm{H}\left(64\right.$-bit key) $=\log _{2} 2^{64}=64$
- Unicity distance is defined as:

$$
\mathrm{U}=\mathrm{H}(K) / D
$$

Expected minimum amount of ciphertext needed for brute-force attack to succeed.

3 Sep 2001

Unicity Examples

- One-Time Pad
$\mathrm{H}(\mathrm{K})=$ infinite
$\mathrm{U}=\mathrm{H}(\mathrm{K}) / \mathrm{D}=$ infinite
- Monoalphabetic Substitution
$\mathrm{H}(K)=\log _{2} 26!\approx 87$
$\mathrm{D}=3.4$ (redundancy in English)
$\mathrm{U}=\mathrm{H}(\mathrm{K}) / \mathrm{D} \approx 25.5$
Intuition: if you have 25 letters, probably only matches one possible plaintext.
$\mathrm{D}=0$ (random bit stream)
$\mathrm{U}=\mathrm{H}(\mathrm{K}) / \mathrm{D}=$ infinite
3 Sep 2001
University of Virginia CS 588

Unicity Distance

- Probabilistic measure of how much ciphertext is needed to determine a unique plaintext
- Does not indicate how much ciphertext is needed for cryptanalysis
- If you have less than unicity distance ciphertext, can't tell if guess is right.
- As redundancy approaches 0 , hard to cryptanalyze even simple cipher.

Key space: $\left\{K_{1}, K_{2}, \ldots, K_{l}\right\}$

Conditional Probability

$\mathrm{P}(B \mid A)=$ The probability of B, given that A occurs
$P($ coin flip is tails $)=1 / 2$
$\mathrm{P}($ coin flip is tails \mid last coin flip was heads $)=$
$1 / 2$
$\mathrm{P}($ today is Monday \mid yesterday was Sunday $)=$
1
$\mathrm{P}($ today is a weekend day \mid yesterday was a workday $)=$ $1 / 5$

Calculating Conditional Probability

$$
\mathrm{P}(B \mid A)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A)}
$$

$\mathrm{P}($ coin flip is tails \mid last coin flip was heads $)=$ P (coin flip is tails and last coin flip was heads) P (last coin flip was heads)

$$
=(1 / 2 * 1 / 2) / 1 / 2=1 / 2
$$

3 Sep 2001
University of Virginia CS 588

Perfect Cipher

Definition: $\forall \mathrm{i}, \mathrm{j}: P\left(M_{\mathrm{i}} \mid C_{\mathrm{j}}\right)=P\left(M_{\mathrm{i}}\right)$

A cipher is perfect iff:
$\forall M, C \quad P(C \mid M)=P(C)$
Or, equivalently:
$\forall M, C \quad P(M \mid C)=P(M)$

Example: Monoalphabetic

- Random monoalphabetic substitution for one letter message:
$\forall \mathrm{C}, \mathrm{M}: p(\mathrm{C})=p(\mathrm{C} \mid \mathrm{M})=1 / 26$.

Perfect Cipher

$\forall M, C \quad P(C \mid M)=P(C)$
$\forall M, C \quad P(C)=\sum_{\mathrm{K}_{\mathrm{K}}(\mathrm{M})=\mathrm{C}} \mathrm{P}(\mathrm{K})$
Or:
$\forall \mathrm{C} \quad \Sigma \mathrm{P}(\mathrm{K}) \quad$ is independent of M $\mathrm{E}_{\mathrm{K}}^{\mathrm{k}}(\mathrm{M})=\mathrm{C}$
Without knowing anything about the key, any ciphertext is equally likely to match and plaintext.
3Sep $2001 \quad$ University of Virginia CS $588 \quad 22$

Example: One-Time Pad

For each bit:
$p\left(\mathrm{C}_{\mathrm{i}}=0\right)=p\left(\mathrm{C}_{\mathrm{i}}=0 \mid \mathrm{M}_{\mathrm{i}}=0\right)=p\left(\mathrm{C}_{\mathrm{i}}=0 \mid \mathrm{M}_{\mathrm{i}}=1\right)=1 / 2$ since $\mathrm{C}_{\mathrm{i}}=\mathrm{K}_{\mathrm{i}} \oplus \mathrm{M}_{\mathrm{i}}$

$$
p\left(\mathrm{~K}_{\mathrm{i}} \oplus \mathrm{M}_{\mathrm{i}}=0\right)=p\left(\mathrm{~K}_{\mathrm{i}}=1\right) * p\left(\mathrm{M}_{\mathrm{i}}=1\right)
$$

$$
+p\left(\mathrm{~K}_{\mathrm{i}}=0\right) * p\left(\mathrm{M}_{\mathrm{i}}=0\right)
$$

Truly random K means $p\left(\mathrm{~K}_{\mathrm{i}}=1\right)=p\left(\mathrm{~K}_{\mathrm{i}}=0\right)=1 / 2$

$$
=1 / 2 * p\left(\mathrm{M}_{\mathrm{i}}=1\right)+1 / 2 * p\left(\mathrm{M}_{\mathrm{i}}=0\right)
$$

$$
=1 / 2 *\left(p\left(\mathrm{M}_{\mathrm{i}}=1\right)+p\left(\mathrm{M}_{\mathrm{i}}=0\right)\right)=1 / 2
$$

All key bits are independent, so:

$$
p(\mathrm{C})=p(\mathrm{C} \mid \mathrm{M}) \quad \text { QED. }
$$

3 Sep 2001
University of Virginia CS 588

Perfect Cipher Keyspace Theorem

Theorem: If a cipher is perfect, there must be at least as many keys (l) are there are possible messages (n).

Proof, cont.
Consider the message M_{0} where $\mathrm{M}_{0} \neq \mathrm{D}_{\mathrm{K}}\left(\mathrm{C}_{0}\right)$ for any K .
So,
$p\left(\mathrm{C}_{0} \mid \mathrm{M}_{0}\right)=0$.
In a perfect cipher,

$$
p\left(\mathrm{C}_{0} \mid \mathrm{M}_{0}\right)=p\left(\mathrm{C}_{0}\right)>0 .
$$

Contradiction! It isn't a perfect cipher. Hence, all perfect ciphers must have $l \geq n$.

Example: Monoalphabetic

Is random monoalphabetic substitution a perfect cipher for messages of up to 2 letters?

$$
\begin{aligned}
& l=26!\quad n=26^{2} \\
& l \geq n .
\end{aligned}
$$

No! Showing $l \geq n$ does not prove its perfect.

Proof by Contradiction

Suppose there is a perfect cipher with $l<n$. (More messages than keys.)
Let C_{0} be some ciphertext with $\mathrm{p}\left(\mathrm{C}_{0}\right)>0$.
There exist
m messages M such that $\mathrm{M}=\mathrm{D}_{\mathrm{K}}\left(\mathrm{C}_{0}\right)$
n - m messages M_{0} such that $\mathrm{M}_{0} \neq \mathrm{D}_{\mathrm{K}}\left(\mathrm{C}_{0}\right)$
We know $1 \leq m \leq l<n$ so $n-m>0$ and there is at least one message M_{0}.

Example: Monoalphabetic

Random monoalphabetic substitution is not a perfect cipher for messages of up to 20 letters:

$$
l=26!\quad n=26^{20}
$$

$l<n$ its not a perfect cipher.

In previous proof, could choose $\mathrm{C}_{0}=$ " AB " and $\mathrm{M}_{0}=$ "ee" and $p\left(\mathrm{C}_{0} \mid \mathrm{M}_{0}\right)=0$.

Summary

- Cipher is perfect: $\forall \mathrm{i}, \mathrm{j}: p\left(M_{\mathrm{i}} \mid C_{\mathrm{j}}\right)=p\left(M_{\mathrm{i}}\right)$ Given any ciphertext, the probability that it matches any particular message is the same.
- Equivalently, $\forall \mathrm{i}, \mathrm{j}: p\left(C_{\mathrm{i}} \mid M_{\mathrm{i}}\right)=p\left(C_{\mathrm{i}}\right)$ Given any plaintext, the probability that it matches any particular ciphertext is the same.

Imperfect Cipher

- To prove a cipher is imperfect:
- Find a ciphertext that is more likely to be one message than another
- Show that there are more messages than keys
- Implies there is some ciphertext more likely to be one message than another even if you can't find it.

Charge

- Problem Set 1: due next Monday
- Next lecture will help with Question 5a,b
- All other questions covered (as much as we will cover them in class) already
- Next time:
- Project Kickoff
- Enigma

