Lecture 4: Striving for Confusion

Structures have been found in DES that were undoubtedly inserted to strengthen the system against certain types of attack. Structures have also been found that appear to weaken the system.

Lexar Corporation, "An Evalution of the DES", 1976.

Menu

- Projects
- Enigma Continued
- Block Ciphers

Letter Permutations

Symmetry of Enigma:
if $\mathrm{E}_{\text {pos }}(x)=y$ we know $\mathrm{E}_{\text {pos }}(y)=x$
Given message openings
$\begin{array}{lll}\text { DMQ VBM } & \mathrm{E}_{1}\left(m_{1}\right)=\mathrm{D} & \mathrm{E}_{4}\left(m_{1}\right)=\mathrm{V} \\ \text { VON PUY } & \mathrm{E}_{1}\left(m_{2}\right)=\mathrm{V} & \mathrm{E}_{4}\left(m_{2}\right)=\mathrm{P}\end{array}$
PUC FMQ
With enough message openings, we can build complete cycles for each position pair:
$\mathrm{E}_{1} \mathrm{E}_{4}=(\mathrm{DVPFKXGZYO})(E I J M U N Q L H T)(B C)(R W)(A)(S)$ Note: Cycles must come in pairs of equal length
(Examples in Code Book had pairs of unequal length) 10 Sept 2001

University of Virginia CS 588
4

Composing Involutions

- E_{1} and E_{4} are involutions $(x \rightarrow y \Rightarrow y \rightarrow x)$
- Without loss of generality, we can write:
E_{1} contains $\left(\mathrm{a}_{1} \mathrm{a}_{2}\right)\left(\mathrm{a}_{3} \mathrm{a}_{4}\right) \ldots\left(\mathrm{a}_{2 \mathrm{k}-1} \mathrm{a}_{2 \mathrm{k}}\right)$
E_{2} contains $\left(a_{2} a_{3}\right)\left(a_{4} a_{5}\right) \ldots\left(a_{2 k} a_{1}\right)$
E
$\mathrm{a}_{1} \leftrightarrow \mathrm{a}_{2}$
$\mathrm{a}_{2} \leftrightarrow x=\mathrm{a}_{3}$ or $x=a_{1}$
$\mathrm{a}_{3} \leftrightarrow \mathrm{a}_{4}$
$\mathrm{a}_{4} \leftrightarrow x=\mathrm{a}_{5}$ or $x=\mathrm{a}_{1}$

Rejewski's Theorem

$$
\begin{array}{r}
E_{1} \text { contains }\left(a_{1} a_{2}\right)\left(a_{3} a_{4}\right) \ldots\left(a_{2 k-1} a_{2 k}\right) \\
E_{4} \text { contains }\left(a_{2} a_{3}\right)\left(a_{4} a_{5}\right) \ldots\left(a_{2 k} a_{1}\right) \\
E_{1} E_{4} \text { contains }\left(a_{1} a_{3} a_{5} \ldots a_{2 k-1}\right) \\
\left(a_{2 k} a_{2 k-2} \ldots a_{4} a_{2}\right)
\end{array}
$$

- The product of two involutions consists of pairs cycles of the same length
- For cycles of length n, there are n possible factorizations

10 Sept 2001

Factoring Permutations

$\mathrm{E}_{1} \mathrm{E}_{4}=(\mathrm{DVPFKXGZYO})(\mathrm{EIJMUNQLHT})(\mathrm{BC})$
$(\mathrm{RW})(\mathrm{A})(\mathrm{S})$
(A) $(\mathrm{S})=(\mathrm{AS}) \circ(\mathrm{SA})$
(BC) $(\mathrm{RW})=(\mathrm{BR})(\mathrm{CW}) \circ(\mathrm{BW})(\mathrm{CR})$
or $=(\mathrm{BW})(\mathrm{RC}) \circ(\mathrm{WC})(\mathrm{BR})$

10 Sept 2001

How many factorizations?

(DVPFKXGZYO) (EIJMUNQLHT)

E_{1}	
$D \leftrightarrow a_{2}$	E_{2}
$V \leftrightarrow a_{4}$	$a_{2} \leftrightarrow V$
$a_{4} \leftrightarrow P$	

Once we guess a_{2} everything else must follow! So, only n possible factorizations for an n-letter cycle
Total to try $=2$ * $10=20$
$E_{2} E_{5}$ and $E_{3} E_{6}$ likely to have about 20 to try also
\Rightarrow About 20^{3} (8000) factorizations to try
(still too many in pre-computer days)
10 Sept 2001 University of Virginia CS 588
\qquad

Luckily...

- Operators picked guessable message keys ("cillies")
- Identical letters
- Easy to type (e.g., QWE)
- If we can guess $P_{1}=P_{2}=P_{3}$ (or known relationships) can reduce number of possible factorizations
- If we're lucky - this leads to E_{1}... E_{6}
- Early 1939 - Germany changes scamblers and adds extra plugboard cables, stop double-transmissions
- Poland unable to cryptanalyze
- July 1939-Rejewski invites French and British cryptographers
- It is actually breakable
- Gives England replica Enigma machine constructed from plans University of Virginia CS 588

1939

10 Sept 2001

- Alan Turing leads British effort to crack Enigma
- Use cribs ("WETTER" transmitted every day at 6am)
- Still needed to brute force check $\sim 1 \mathrm{M}$ keys.
- Built "bombes" to automate testing
- How many people worked on breaking

Enigma? 30,000 people worked at Bletchley Park on breaking Enigma - 100,000 for Manhattan Project

10 Sept 2001
University of Virginia CS 588
11

Enigma Cryptanalysis

- Relied on combination of sheer brilliance, mathematics, espionage, operator errors, and hard work
- Huge impact on WWII
- Britain knew where German U-boats were
- Advance notice of bombing raids
- But...keeping code break secret more important than short-term uses

10 Sept 2001
University of Virginia CS 588

End of classical ciphers

A billion billion is a large number, but it's not that large a number.
— Whitfield Diffie

Goals of Cipher:

 Diffusion and Confusion- Claude Shannon [1945]
- Diffussion:
- Small change in plaintext, changes lots of ciphertext
- Statistical properties of plaintext hidden in ciphertext
- Confusion:
- Statistical relationship between key and ciphertext as complex as possible
- So, need to design functions that produce output that is diffuse and confused
10 Sept 2001
University of Virginia CS 588
14

Block Ciphers

- Stream Ciphers
- Encrypts small (bit or byte) units one at a time
- Block Ciphers
- Encrypts large chunks (64 bits) at once
- Ciphers we have seen so far:
- Changing one letter of message only changes one letter of ciphertext
- There were classical ciphers that had some diffusion: Vigenère autokey, Hill cipher (2-letter chunks)

Ideal Block Cipher

- 64 bit blocks
- 2^{64} possible plaintext blocks, must have at least 2^{64} corresponding ciphertext blocks
- There are 2^{64} ! possible mappings
-Why not just create a random mapping?
- Need a $2^{64 *} 64$-bit table $\approx 10^{21}$ bits
- \$14 quadrillion
- Need to distribute new table if compromised
- Approximate ideal random mapping using components controlled by a key

10 Sept 2001

Feistel Cipher Structure

One Round Feistel

$$
\begin{array}{ll}
\mathrm{E}\left(\mathrm{~L}_{0} \| \mathrm{R}_{0}\right): & \mathrm{L}_{\mathrm{i}}=\mathrm{R}_{\mathrm{i}-1} \\
\mathrm{~L}_{1}=\mathrm{R}_{0} & \mathrm{R}_{\mathrm{i}}=\mathrm{L}_{\mathrm{i}-1} \oplus \mathrm{~F}\left(\mathrm{R}_{\mathrm{i}-1}, \mathrm{~K}_{\mathrm{i}}\right) \\
\left.\mathrm{R}_{1}=\mathrm{L}_{0} \oplus \mathrm{~F}\left(\mathrm{R}_{0}, \mathrm{~K}_{1}\right)\right) \\
\left.\mathrm{C}=\mathrm{R}_{1} \| \mathrm{L}_{1}=\mathrm{L}_{0} \oplus \mathrm{~F}\left(\mathrm{R}_{0}, \mathrm{~K}_{1}\right)\right) \| \mathrm{R}_{0}
\end{array}
$$

10 Sept 2001
18

One Round Feistel				
$L_{i}=\mathrm{R}_{\mathrm{i}-1}$				
$\mathrm{E}\left(\mathrm{L}_{0} \\| \mathrm{R}_{0}\right): \quad \mathrm{R}_{\mathrm{i}}=\mathrm{L}_{\mathrm{L},}, \oplus \mathrm{F}\left(\mathrm{R}_{\mathrm{i}}\right.$				
$\mathrm{L}_{1}=\mathrm{R}_{0}$				
$\left.\mathrm{R}_{1}=\mathrm{L}_{0} \oplus \mathrm{~F}\left(\mathrm{R}_{0}, \mathrm{~K}_{1}\right)\right)$				
$\left.\mathrm{C}=\mathrm{R}_{1} \\| \mathrm{L}_{1}=\mathrm{L}_{0} \oplus \mathrm{~F}\left(\mathrm{R}_{0}, \mathrm{~K}_{1}\right)\right) \\| \mathrm{R}_{0}$				
${ }_{10 s m a m a n}$		${ }^{18}$		

Multiple Rounds

- The entire round is a function:
$\left.\mathrm{f}_{\mathrm{K}}(\mathrm{L} \| \mathrm{R})=\mathrm{R} \| \mathrm{L} \oplus \mathrm{F}(\mathrm{R}, \mathrm{K})\right)$ swap $(\mathrm{L} \| \mathrm{R})=\mathrm{R} \| \mathrm{L}$
- $\mathrm{E}=$ swap ${ }^{\circ}$ swap ${ }^{\circ} \mathrm{f}_{\mathrm{K}_{\mathrm{r}}}{ }^{\circ}$ swap ${ }^{\circ} \mathrm{f}_{\mathrm{K}_{\mathrm{r}-1}}{ }^{\circ}$ $\ldots .{ }^{\circ} \mathrm{f}_{\mathrm{K}_{2}}{ }^{\circ}$ swap ${ }^{\circ} \mathrm{f}_{\mathrm{K}_{1}}$
- $\mathrm{D}=\mathrm{f}_{\mathrm{K}_{1}}{ }^{\circ}$ swap ${ }^{\circ} \mathrm{f}_{\mathrm{K}_{2}}{ }^{\circ} \ldots{ }^{\circ}$
$\mathrm{f}_{\mathrm{Kr}-1}{ }^{\circ}$ swap ${ }^{\circ} \mathrm{f}_{\mathrm{K}_{\mathrm{r}}}{ }^{\circ}$ swap ${ }^{\circ}$ swap

Decryption

```
\(\operatorname{swap}\left(\mathrm{f}_{\mathrm{K}}\left(\operatorname{swap}\left(\mathrm{f}_{\mathrm{K}}(\mathrm{L} \| \mathrm{R})\right)\right.\right.\)
    \(=\operatorname{swap}\left(f_{K}(\operatorname{swap}(R \| L \oplus F(R, K)))\right)\)
    \(=\operatorname{swap}\left(\mathrm{f}_{\mathrm{K}}(\mathrm{L} \oplus \mathrm{F}(\mathrm{R}, \mathrm{K}) \| \mathrm{R})\right)\)
    \(=\operatorname{swap}(\mathrm{R} \|(\mathrm{L} \oplus \mathrm{F}(\mathrm{R}, \mathrm{K})) \oplus \mathrm{F}(\mathrm{R}, \mathrm{K}))\)
    \(=\operatorname{swap}(\mathrm{R} \| \mathrm{L})=\mathrm{L} \| \mathrm{R}\)
```

So swap ${ }^{\circ} \mathrm{f}_{\mathrm{K}}$ its own inverse!

10 Sept 2001

F

DES

- NIST (then NBS) sought standard for data security (1973)
- What are the requirements on F ?

IBM's Lucifer only reasonable proposal

- Modified by NSA
- Changed S-Boxes
- Reduced key from 128 to 56 bits
- Adopted as standard in 1976
- More bits have been encrypted using DES than any other cipher

10 Sept 2001

DES Algorithm

- Feistel cipher with added initial permutation
- Complex choice of F
- 16 rounds
- 56-bit key, shifts and permutations produce 48-bit subkeys for each round

DES Avalanche

1 nput		1
Permut ed:		1
Round 1:		1
Round 2:		5
Round 3 :	**......**.*......*	18
Round 4:	*.*.**.	28
Round 5: *.	***... ${ }^{\text {... }}$ *.*****.*	29
Round 6: ..	*.**...*.. **...**...*.*	26
Round 7: *****	**..*.*..**.....*..**....	
Round 8: *. *.	***.*...*******. . ***	
Round 9: ***.	,	
Round 10: *.**	***.**. *. . ${ }^{* * * * * * . * * * . . . ~}$	
Round 11: ...****	****........*.**..*.*.**.	
Round 12: *.	***...****....******.	
Round 13: **..	.*.*..***....*	
Round 14: *.		
Round 15: **.*	**.*.. *.*.**. **. **.*....***	
Round 16: .*.		
Out put:	***...***.**. *....*......*.*.	
Source:	http://www-groups.dcs.st-and.	
10 Sept 2001	University of Virginia CS 588	28

Key Schedule

- Need 16 48-bit keys
-Best security: just use 16 independent keys
- 768 key bits
- 56-bit key used (64 bits for parity checking)
- Produce 48-bit round keys by shifting and permuting

Is DES a perfect cipher?

- No: more messages than keys
- Even for 1 64-bit block 2^{64} messages > 2^{56} keys

Attacking DES: Brute Force

- Key is 56 bits
- $2^{56}=7.2^{*} 10^{16}=72$ quadrillion
- Try 1 per second = 9 Billion years to search entire space
- Distributed attacks
- Steal/borrow idle cycles on networked PCs
- Search half of key space with 100000 PCs * 1M keys/second in 25 days

10 Sept 2001
University of Virginia CS 588
32

Brute Force Attacks

- RSA DES challenges:
- 1997: 96 days (using 70,000 machines)
-Feb 1998: 41 days (distributed.net)
- July 1998: 56 hours (custom hardware)
- January 1999: 22 hours (EFF + distributed.net)
- 245 Billion keys per second
- NSA can probably crack DES routinely (but they won't admit it)

Charge

- Next time:
-Better than brute force DES attacks
-3-DES
- Modes of Operation
- Find your project teammates
- Start thinking about projects

