

Menu

- Today's manifest: on line only
- DES Review
- Modes of Operation
- 3DES
- DES Attacks
- Return PS1

12 Sept 2001

Modes of Operation

- Transmitting a long plaintext using DES:
$\mathrm{P}=\mathrm{P}_{1}\left\|\mathrm{P}_{2}\right\| \ldots \| \mathrm{P}_{N}$
- Electronic Codebook Mode:
$\mathrm{C}=\mathrm{E}_{\mathrm{K}}\left(\mathrm{P}_{1}\right)\left\|\mathrm{E}_{\mathrm{K}}\left(\mathrm{P}_{2}\right)\right\| \ldots \| \mathrm{E}_{\mathrm{K}}\left(\mathrm{P}_{N}\right)$
- Problems:
- Any identical blocks encrypted identically
- 64 bits $=8$ ASCII characters
- Lots of ciphertext encrypted with same K

Cipher Block Chaining

$\mathrm{C}_{\mathrm{i}}=\mathrm{E}_{\mathrm{K}}\left(\mathrm{P}_{\mathrm{i}} \oplus \mathrm{C}_{\mathrm{i}-1}\right) \quad \mathrm{C}_{1}=\mathrm{E}_{\mathrm{K}}\left(\mathrm{P}_{1} \oplus \mathrm{IV}\right)$ Decrypt:
$\mathrm{M}_{\mathrm{i}}=\mathrm{D}_{\mathrm{K}}\left(\mathrm{C}_{\mathrm{i}}\right) \oplus \mathrm{C}_{\mathrm{i}-1}$
$\mathrm{M}_{1}=\mathrm{D}_{\mathrm{K}}\left(\mathrm{C}_{1}\right) \oplus \mathrm{IV}$
$\mathrm{D}_{\mathrm{K}}\left(\mathrm{E}_{\mathrm{K}}\left(\mathrm{P}_{\mathrm{i}} \oplus \mathrm{C}_{\mathrm{i}-1}\right)\right) \oplus \mathrm{C}_{\mathrm{i}-1}$
$=\mathrm{P}_{\mathrm{i}} \oplus \mathrm{C}_{\mathrm{i}-1} \oplus \mathrm{C}_{\mathrm{i}-1}=\mathrm{P}_{\mathrm{i}}$

Cipher/Output Feedback

- 1-bit transmission error
- Active eavesdropper
- Performance

Multiple Encryption

- $\mathrm{C}=\mathrm{E}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)$
- Does it double the key space?
- Monoalphabetic cipher

$$
\begin{aligned}
\mathrm{C}_{\mathrm{i}} & =\mathrm{K}_{2}\left[\mathrm{~K}_{1}\left[\mathrm{P}_{\mathrm{i}}\right]\right] \\
& =\mathrm{K}_{3}\left[\mathrm{P}_{\mathrm{i}}\right] \text { for some } \mathrm{K}_{3}
\end{aligned}
$$

Double-Vigenère

- K1 = "BOND"
- $\mathrm{C}=\mathrm{E}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)$
- Is there a K3 such that $\mathrm{C}=\mathrm{E}_{\mathrm{K} 3}(\mathrm{P})$?
- There are 2^{56} keys, and 2^{64} ! mappings
- If DES is good, keys map randomly to mappings.
- K2 = "JAMES BONDBONDBONDBONDBONDBONDBOND
+ JAMESJAMESJAMESJAMESJAMESJAM
- Probability that a randomly chosen mapping corresponds to a DES key:
$2^{56} / 2^{64}!\ll 1 / 2^{63}!$
- Effective key size of Double DES?

$$
=2^{56} * 2^{56=}=2^{112}
$$

WRONG!

Meet-in-the-Middle Attack

- $\mathrm{C}=\mathrm{E}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)$
- $\mathrm{X}=\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})=\mathrm{D}_{\mathrm{K} 2}(\mathrm{C})$
- Brute force attack (given one P / C pair): calculate $\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})$ for all keys (2^{56} work) calculate $\mathrm{D}_{\mathrm{K} 2}$ (C) for all keys (2^{56} work)
the match gives the keys
- Total work $=2{ }^{*} 2^{56}=2^{57}$

12 Sept 2001
University of Virginia CS 588

2-Key Triple DES

- $\mathrm{C}=\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)\right)$
- Why $\mathrm{D}_{\mathrm{K} 2}$ not $\mathrm{E}_{\mathrm{K} 2}$?
- Backwards compatibility with DES
- If K1 = K2: $\mathrm{C}=\mathrm{E}_{\mathrm{K} 1}\left(\mathrm{D}_{\mathrm{K} 1}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)\right)=\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})$
- Actual key size $=56+56$ bits $=112$ bits
- Meet-in-the-middle?
$-\mathrm{X}=\underset{2^{56}}{\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})=} \begin{aligned} & \mathrm{D}_{\mathrm{K} 1}\left(\mathrm{E}_{\mathrm{K} 2}(\mathrm{C})\right) \\ & \text { need to try } 2\end{aligned}$

12 Sept 2001

3-Key Triple DES

- $\mathrm{C}=\mathrm{E}_{\mathrm{K} 3}\left(\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right)\right)$
- $\mathrm{H}(\mathrm{K})=168$
- Used by PGP, S/MIME
- How much work to brute-force?
- Meet-in-the-middle:

$$
\begin{aligned}
\mathrm{X}=\mathrm{D}_{\mathrm{K} 3}(\mathrm{C}) & =\mathrm{D}_{\mathrm{K} 2}\left(\mathrm{E}_{\mathrm{K} 1}(\mathrm{P})\right) \\
2^{56} & +2^{112}
\end{aligned}
$$

Differential Cryptanalysis

- [Biham \& Shamir, 1990]
- Choose plaintext pairs with fixed difference: $\Delta \mathrm{X}=\mathrm{X} \oplus \mathrm{X}^{\prime}$
- Use differences in resulting ciphertext to guess key probabilities
- With enough work (2^{47}) and enough chosen plaintexts (2^{47}) can find key (compared to ${ }^{26}$ brute force work) Takes 3 years of 1.5 Mbps encrypting chosen plaintext! 12 Sept $2001 \quad$ University of Virginia CS 588 25
(32 bits

Differential Cryptanalysis

- Propagate experimental probabilities for 1 round through 16 rounds
- After enough P-C pairs, one key becomes most probable
- Difficulty depends heavily on S-Box choices
- First published in 1990, but NSA knew about it in 1973!

12 Sept 2001

Differential Cryptanalysis

- "Successful" on DES up to 15 rounds (better than exhaustive search)
- By $16^{\text {th }}$ round, characteristics probabilities are 2^{-56}
- Very successful on DES variants (breaks GDES with 6 chosen plaintexts)
- Very successful on FEAL (FEAL-4, FEAL-8, FEAL-N, FEAL-NX, ...)

DES Power Consumption

Microprocessors use different amount of power depending on what they are doing!

[^0]University of Virginia CS 588
34

Power Analysis Scenario

- Attacker has physical device that encrypts and decrypts using a secret key
- Is this realistic?

Smart Cards (Mondex)

Side Channel Cryptanalysis

- Regular Cryptanalysis: mathematical - Attacker sees inputs, outputs
- Side Channel Cryptanalysis
- Attacker sees something else: power consumption, encryption/decryption time, radiation, etc.
- Depends on implementation of algorithm

12 Sept 2001
University of Virginia CS 588
36

Measuring Power Consumption

- Add a resistor between power source and device, measure voltage across resistor
$\mathrm{I}=\mathrm{V} / \mathrm{R}$
- Can sample at over 1 GHz with $<1 \%$ error

Defenses

- Reduce signal
- Physical shielding, microprocessor design (make all shifts use same power, etc.)
- Introduce random noise
- Change execution order, do random computation, etc.
- Design cryptosystems with DPA in mind
- Nonlinear key updates between transactions

Power Use Reveals Key

- Current for a left shift depends on leftmost bit:
- if 1, need to set rightmost bit after
- DES key schedule uses shifts, can tell bits in key!
- Current for XOR may depend on number of switches

Charge

- Continue thinking about project ideas
- Each project group should send me email or talk to me by next week about what you are considering
- Next time: modern block ciphers
- Read AES papers before next class

[^0]: 12 Sept 2001

