
1

David Evans
http://www.cs.virginia.edu/~evans

CS588: Security and Privacy
University of Virginia
Computer Science

Lecture 6:
Two Fish on the Rijndael

The algorithm might look haphazard, but we did everything
for a reason. Nothing is in Twofish by chance. Anything in
the algorithm that we couldn't justify, we removed. The
result is a lean, mean algorithm that is strong and
conceptually simple.

Bruce Schneier

17 Sept 2001 University of Virginia CS 588 2

Menu
• Clipper
• AES Program
• RC6
• Blowfish
• AES Winner - Rijndael

17 Sept 2001 University of Virginia CS 588 3

Breaking Grades File
• Not in my office or any UVA computer

– Do not try to break into any UVA
computer

• Home PC: C: \cs588\grades.txt
(encrypted)
– If you obtain that file, it tells you what to do

next
• Adelphia Cable Modem
• My browser is set to disallow ActiveX,

allow Java and JavaScript

17 Sept 2001 University of Virginia CS 588 4

Clipper
• 1993 – AT&T markets secure telephony

device
• Law enforcement: US courts can

authorize wire taps, must be able to
decrypt

• NSA proposes Clipper Chip
– Secret algorithm (Skipjack), only

implemented in hardware

17 Sept 2001 University of Virginia CS 588 5

Key Escrow

• NSA has copy of special key, can get
with a court order

• Sender transmits E (M, k) || LEAF (“law
enforcement agents’ field”)

• Holder of special key can decrypt LEAF
to find message key and decrypt
message

17 Sept 2001 University of Virginia CS 588 6

LEAF

LEAF = E ((E (k, u) || n || a), f)
k = message key
u = 80-bit special key (unique to chip)

n = 30-bit identifier (unique to chip)

a = escrow authenticator

f = 80-bit key (same on all chips)

Known by FBI

2

17 Sept 2001 University of Virginia CS 588 7

Wire Tap
• FBI investigating Alice, intercepts Clipper

communication

• Uses f to decrypt LEAF:
D (E ((E (k , u) || n || a), f)) = E (k , u) || n || a

• Delivers n and court order to 2 escrow
agencies, obtains u

• Decrypts E (k, u) to obtain message key
and decrypt message

17 Sept 2001 University of Virginia CS 588 8

Two Escrow Agencies

• Proposal didn’t specify who (one
probably NSA)

• Divide u so neither one can decrypt
messages on their own (even if they
obtain f)

One gets u ⊕ X, other gets X

17 Sept 2001 University of Virginia CS 588 9

Clipper Security

• How do you prevent criminals from
transmitting wrong LEAF?
– NSA solution: put it in hardware, inspect all

Clipper devices
• Still vulnerable to out -of -the box device

17 Sept 2001 University of Virginia CS 588 10

Clipper Politics
• Not widely adopted, administration backed

down
– Secret algorithm
– Public relations disaster

• Didn’t involve academic cryptographers early
• Proposal was rushed, in particular hadn’t figured out who

would be escrow agencies

• See http://www.eff.org/pub/Privacy/Key_escrow/Clipper/

• Future?: Senators have called for new
Clipper-like restrictions on cryptography

• Lessons learned well for AES process

17 Sept 2001 University of Virginia CS 588 11

AES
• 1996: NIST initiates program to choose

Advanced Encryption Standard to replace
DES

• Requests algorithm submissions: 15
• Requirements:

– Secure for next 50-100 years

– Performance: faster than 3DES
– Support 128, 192 and 256 bit keys

• Brute force search of 2128 keys at 1 Trillion keys/second
would take 1019 years (109 * age of universe)

– Must be a block cipher

17 Sept 2001 University of Virginia CS 588 12

AES Process

• Open Design
– DES: design criteria for S-boxes kept secret

• Many good choices
– DES: only one acceptable algorithm

• Public cryptanalysis efforts before choice
– Heavy involvements of academic community,

leading public cryptographers

• Conservative (but quick): 4 year+ process

3

17 Sept 2001 University of Virginia CS 588 13

AES Round 1
• 15 submissions accepted
• Weak ciphers quickly eliminated

– Magenta broken at conference!

• 5 finalists selected: MARS (IBM), RC6
(Rivest, et. al.), Rijndael (top Belgium
cryptographers), Serpent (Anderson, Biham,
Knudsen), Twofish (Schneier, et. al.)
– Security v. Performance is main tradeoff

• How do you measure security?
– Simplicity v. Complexity

• Need complexity for confusion
• Need simplicity to be able to analyze and implement

efficiently
17 Sept 2001 University of Virginia CS 588 14

Breaking a Cipher
• Real World Standard

– Attacker can decrypt secret messages
– Reasonable amount of work, actual amount of

ciphertext

• “Academic” Standard
– Attacker can determine something about the

message
– Given unlimited number of chosen plaintext -

ciphertext pairs
– Can perform a very large number of computations,

up to, but not including, 2n, where n is the key size in
bits (i.e. assume that the attacker can’t mount a brute
force attack, but can get close)

17 Sept 2001 University of Virginia CS 588 15

AES Evaluation Criteria

1. Security
Most important, but hardest to measure

Resistance to cryptanalysis, randomness of output

2. Cost and Implementation Characteristics
Licensing, Computational, Memory
Flexibility (different key/block sizes), hardware

implementation

From RC5 to RC6
in seven easy steps

From Rivest’s RC6 talk, http://www.rsasecurity.com/rsalabs/aes/

17 Sept 2001 University of Virginia CS 588 17

Description of RC6
• RC6-w/r/b parameters:

– Word size in bits: w (32) (lg(w) = 5)
– Number of rounds: r (20)
– Number of key bytes : b (16, 24, or 32)

• Key Expansion:
– Produces array S[0, … 2r + 3] of w-bit round

keys.

• Encryption and Decryption:
– Input/Output in 32-bit registers A,B,C,D

17 Sept 2001 University of Virginia CS 588 18

Design Philosophy
• Leverage experience with RC5: use

data-dependent rotations to achieve a
high level of security.

• Adapt RC5 to meet AES requirements
• Take advantage of a new primitive for

increased security and efficiency: 32x32
multiplication, which executes quickly on
modern processors, to compute rotation
amounts.

4

17 Sept 2001 University of Virginia CS 588 19

Data-Dependent Rotations
hgfedcba << 3

cbahgfed

X ⊕ X’ = ∆ X
X1 = X << f(X, k) X1’ = X’ << f (X’, k)

Can we say anything about ∆X1 = X1 ⊕ X1 ’?
Same number of bits are still different, but can’t tell
which ones.

<<< n means rotate left by amount in low order log2w
bits of n (word size w = 32, 5 bits)

17 Sept 2001 University of Virginia CS 588 20

(1) Start with RC5

RC5 encryption inner loop:

for i = 1 to r do
A = ((A ⊕ B) <<< B) + S [i]
(A, B) = (B, A)

<<< only depends on 5 bits of B
Can RC5 be strengthened by having rotation

amounts depend on all the bits of B?

17 Sept 2001 University of Virginia CS 588 21

• Modulo function?
Use low-order bits of (B mod d)

• Linear function?
Use high-order bits of (c × B)

• Quadratic function?
Use high-order bits of (B × (2B+1))

Better rotation amounts?

Too slow!

Hard to pick c well

17 Sept 2001 University of Virginia CS 588 22

Properties B × (2B+1)
should have:

1. One-to-one (can invert for decryption)
2. Good distribution – if B is well

distributed, so is B × (2B + 1)
3. High order bits depend on all bits of B

(diffusion)
4. Easy to calculate efficiently (if your

hardware has 32-bit multiplies)

17 Sept 2001 University of Virginia CS 588 23

B × (2B+1) is one-to-one mod 2w

Proof: By contradiction: Assume B ≠ C
and B × (2B + 1) = C × (2C + 1) mod 2w

then
B × (2B + 1) - C × (2C + 1) = 0 mod 2w

2B2 + B - (2C2 + C) = 0 mod 2w

(B - C) × (2B+2C+1) = 0 mod 2w

But (B-C) is nonzero and (2B+2C+1) is odd; their
product can’t be zero! o

Corollary:
B uniform à B × (2B+1) uniform
(and high-order bits are uniform too!)

17 Sept 2001 University of Virginia CS 588 24

3. High-order bits of B × (2B+1)
depend on all bits of B (diffusion)

B = B31B30B29 … B1B0 in binary,
× T = 2B+1 = B30B29B28 … B01

B31B30B29 … B1B0
B0 * B31B30B29 … B1B0

B1 * B31B30B29 … B1B0

+ …
f(B) = F31F30F29 … F1F0

Fi = (1 × Bi) + Σ(Bj × Bi-j-1) + Ci - 1 mod 2
j = 0..i-1

5

17 Sept 2001 University of Virginia CS 588 25

Diffusion, cont.
Fi = Bi + Σ(Bj × Bi-j -1) + Ci - 1 mod 2

j= 0..i-1

Ci = Bi + Σ(Bj × Bi-j -1) + Ci - 1 div 2
j= 0..i-1

• Flipping bit Bi
– Leaves bits F0 … F i - 1 of f(B) unchanged,
– Flips bit F i always
– Flips bit F j for j > i, with probability approximately ½

• Different for different j’s, but F j depends on Bi for all i > j.
– Is likely to change some high-order bits

17 Sept 2001 University of Virginia CS 588 26

(2) Quadratic Rotation Amounts

for i = 1 to r do
t = (B × (2B + 1)) <<< 5
A = ((A ⊕ B) <<< t) + S[i]
(A, B) = (B, A)

But now much of the output of multiplication is
being wasted (only 5 top bits used)...

17 Sept 2001 University of Virginia CS 588 27

(3) Use t, not B, as xor input

for i = 1 to r do
t = (B × (2B + 1)) <<< 5
A = ((A ⊕ tt) <<< t) + S[i]
(A, B) = (B, A)

RC5 used 64 bit blocks
AES requires 128-bit blocks
Double size of A and B?

64-bit registers and operations are poorly
supported by typical compilers and hardware

17 Sept 2001 University of Virginia CS 588 28

(4) Do two RC5’s in parallel

M = A0B0A1B1A2B2A3B3…
M = A0B0C0D0A1B1C1D1…
for i = 1 to r do

t = (B × (2B + 1)) <<< 5
A = ((A ⊕ t) <<< t) + S[2i2i]
(A, B) = (B, A)
u = (D × (2D + 1)) <<< 5
C = ((C ⊕ u) <<< u) + S[2i + 1]
(C, D) = (D, C)

Same thing
for next 64
bits

17 Sept 2001 University of Virginia CS 588 29

(5) Mix up data between copies
Switch rotation amounts between
copies, and cyclically permute registers
instead of swapping:
for i = 1 to r do

t = (B x (2B + 1)) <<< 5
u = (D x (2D + 1)) <<< 5
A = ((A ⊕ t) <<< uu) + S[2i]
C = ((C ⊕ u) <<< tt) + S[2i + 1]
(A, B, C, D) = (B, C, D, A)(A, B, C, D) = (B, C, D, A)

17 Sept 2001 University of Virginia CS 588 30

One Round of RC6

55

ff

A B C D

<<<<<<

<<< <<<

S[2i] S[2i+1]

A B C D

t u

6

17 Sept 2001 University of Virginia CS 588 31

Key Expansion (Same as RC5’s)
• Input: array L [0 … c-1] of input key words
• Output: array S [0 … 43] of round key words
• Procedure:

S [0] = 0xB7E15163
for i = 1 to 43 do S[i] = S[i-1] + 0x9E3779B9
A = B = i = j = 0
for s = 1 to 132 do

A = S[i] = (S[i] + A + B) <<< 3
B = L[j] = (L[j] + A + B) <<< (A + B)
i = (i + 1) mod 44
j = (j + 1) mod c

= Odd[(e-2)232]

= Odd[(Φ-1)232]

17 Sept 2001 University of Virginia CS 588 32

What do π/e/Φ have to do with
cryptography?

• Used by RC5, RC6, Blowfish, etc. in
magic constants

• Mathematical constants have good
pseudorandom distribution

• Since they are public and well-known,
no fear that choice is a trap door

17 Sept 2001 University of Virginia CS 588 33

(6) Add Pre- and Post-Whitening
B = B + S[0]
D = D + S[1]
for i = 1 to r do

t = (B x (2B + 1)) <<< 5
u = (D x (2D + 1)) <<< 5
A = ((A ⊕ t) <<< u) + S[2i]
C = ((C ⊕ u) <<< t) + S[2i + 1]
(A, B, C, D) = (B, C, D, A)

A = A + S[2r + 2]
C = C + S[2r + 3]

17 Sept 2001 University of Virginia CS 588 34

(7) Set r = 20 for high security

Final RC6

(based on analysis)B = B + S[0]
D = D + S[1]
for i = 1 to 20 do

t = (B x (2B + 1)) <<< 5
u = (D x (2D + 1)) <<< 5
A = ((A ⊕ t) <<< u) + S[2i]
C = ((C ⊕ u) <<< t) + S[2i + 1]
(A, B, C, D) = (B, C, D, A)

A = A + S[42]
C = C + S[43]

17 Sept 2001 University of Virginia CS 588 35

RC6 Decryption (for AES)
C = C – S [43]
A = A – S [42]
for i = 20 downto 1 do

(A, B, C, D) = (D, A, B, C)
u = (D x (2D + 1)) <<< 5
t = (B x (2B + 1)) <<< 5
C = ((C – S [2i + 1]) >>> t) ⊕ u
A = ((A – S [2i]) >>> u) ⊕ t

D = D - S[1]
B = B - S[0]

17 Sept 2001 University of Virginia CS 588 36

Blowfish
• [Schneier93]
• 64-bit block cipher
• Much faster than DES
• Variable key length:

32-448 bits
• Many attempted crytanalyses, none

successful yet
• Widely used: ssh, OpenBSD, PGPFone

7

17 Sept 2001 University of Virginia CS 588 37

Key-Dependent S-Boxes

• Differential Cryptanalysis depends on
analyzing S-box input/output different
probabilities

• Change the S-boxes so you can’t do
analysis

17 Sept 2001 University of Virginia CS 588 38

Blowfish → Twofish
• Blowfish: runs encryption 521 times to

produce S-boxes
– Too slow for AES, requires too much

memory for smart cards
• Twofish

– Provides options for how many key-
dependant S-boxes (tradeoff security/time-
space)

– Also: increase block size (128 required by
AES), change key schedule, etc.

17 Sept 2001 University of Virginia CS 588 39

Two Fish

From http://www.ddj.com/articles/1998/9812/9812b/9812bf1.htm
17 Sept 2001 University of Virginia CS 588 40

Choosing AES
(Table from Twofish Paper)

104 KB2.671816Twofish

98 KB1.112018Rijndael

48 KB1.184315RC6

85 KB1.903423MARS

341 KB3.566962Serpent

Simplicity
(code size)

Safety
Factor

Speed
(8)

Speed
(32)Cipher

(cycles/byte encrypt)

17 Sept 2001 University of Virginia CS 588 41

AES Winner: Rijndael
Invented by Joan Daemen and Vincent Rijmen

Rijndael. A variant of Square, the chief
drawback to this cipher is the difficulty
Americans have pronouncing it.

Bruce Schneier

Selected as AES, October 2000

17 Sept 2001 University of Virginia CS 588 42

Rijndael Overview
• Key sizes: 128, 192, 256 bits
• Block sizes: 128, 192, 256 bits
• 10 rounds (including initial AddKey)

– Academic break on 9 rounds, 256-bit key
gives safety factor of 10/9 = 1.11
• Requires 2224 work and 285 chosen related-key

plaintexts (why is this considered a break for
256-bit key but not 128-bit key?)

“Our results have no practical significance for
anyone using the full Rijndael.”

8

17 Sept 2001 University of Virginia CS 588 43

Rijndael Round
1. Byte substitution

using non-linear S-
Box (independently
on each byte)

2. Shift rows (square)
3. Mix columns –

matrix multiplication
by polynomial

4. XOR with round key
17 Sept 2001 University of Virginia CS 588 44

Rijndael Design

• Resistant to linear and differential
cryptanalysis

• Differential trail
– Probability that a given difference a’

pattern at input produces an output
difference of b’

– Choose S-box and multiplication
polynomial to minimize maximum
difference probability

17 Sept 2001 University of Virginia CS 588 45

Charge

• Designing and picking a Cipher that will last
50 years is hard
– Advances in computing power
– Advances in cryptanalysis
– Performance/security tradeoff keeps changing –

need something that works today and in 2050

• This week: talk or email me about your
project ideas

• Next time:
– Key Distribution

