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David Evans
http://www.cs.virginia.edu/~evans

CS588: Security and Privacy
University of Virginia
Computer Science

Lecture 6: 
Two Fish on the Rijndael

The algorithm might look haphazard, but we did everything 
for a reason. Nothing is in Twofish by chance. Anything in 
the algorithm that we couldn't justify, we removed. The 
result is a lean, mean algorithm that is strong and 
conceptually simple.

Bruce Schneier
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Menu
• Clipper
• AES Program
• RC6
• Blowfish
• AES Winner - Rijndael
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Breaking Grades File
• Not in my office or any UVA computer

– Do not try to break into any UVA 
computer

• Home PC: C: \cs588\grades.txt 
(encrypted)
– If you obtain that file, it tells you what to do 

next
• Adelphia Cable Modem
• My browser is set to disallow ActiveX, 

allow Java and JavaScript
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Clipper
• 1993 – AT&T markets secure telephony 

device
• Law enforcement: US courts can 

authorize wire taps, must be able to 
decrypt

• NSA proposes Clipper Chip
– Secret algorithm (Skipjack), only 

implemented in hardware
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Key Escrow

• NSA has copy of special key, can get 
with a court order

• Sender transmits E (M, k) || LEAF (“law 
enforcement agents’ field”)

• Holder of special key can decrypt LEAF
to find message key and decrypt 
message
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LEAF

LEAF = E ((E (k, u) || n || a), f )
k = message key
u = 80-bit special key (unique to chip)

n = 30-bit identifier (unique to chip)

a = escrow authenticator

f = 80-bit key (same on all chips)

Known by FBI
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Wire Tap
• FBI investigating Alice, intercepts Clipper 

communication

• Uses f to decrypt LEAF:
D (E ((E (k , u) || n || a), f )) = E (k , u) || n || a

• Delivers n and court order to 2 escrow 
agencies, obtains u

• Decrypts E (k, u) to obtain message key 
and decrypt message
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Two Escrow Agencies

• Proposal didn’t specify who (one 
probably NSA)

• Divide u so neither one can decrypt 
messages on their own (even if they 
obtain f )

One gets u ⊕ X, other gets X
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Clipper Security

• How do you prevent criminals from 
transmitting wrong LEAF?
– NSA solution: put it in hardware, inspect all 

Clipper devices
• Still vulnerable to out -of -the box device
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Clipper Politics
• Not widely adopted, administration backed 

down
– Secret algorithm
– Public relations disaster

• Didn’t involve academic cryptographers early
• Proposal was rushed, in particular hadn’t figured out who 

would be escrow agencies

• See http://www.eff.org/pub/Privacy/Key_escrow/Clipper/

• Future?: Senators have called for new 
Clipper-like restrictions on cryptography 

• Lessons learned well for AES process
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AES
• 1996: NIST initiates program to choose 

Advanced Encryption Standard to replace 
DES

• Requests algorithm submissions: 15 
• Requirements:

– Secure for next 50-100 years

– Performance: faster than 3DES
– Support 128, 192 and 256 bit keys

• Brute force search of 2128 keys at 1 Trillion keys/second 
would take 1019 years (109 * age of universe)

– Must be a block cipher
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AES Process

• Open Design
– DES: design criteria for S-boxes kept secret

• Many good choices
– DES: only one acceptable algorithm

• Public cryptanalysis efforts before choice
– Heavy involvements of academic community, 

leading public cryptographers

• Conservative (but quick): 4 year+ process
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AES Round 1
• 15 submissions accepted
• Weak ciphers quickly eliminated

– Magenta broken at conference!

• 5 finalists selected: MARS (IBM), RC6 
(Rivest, et. al.), Rijndael (top Belgium 
cryptographers), Serpent (Anderson, Biham, 
Knudsen), Twofish (Schneier, et. al.)
– Security v. Performance is main tradeoff

• How do you measure security?
– Simplicity v. Complexity

• Need complexity for confusion
• Need simplicity to be able to analyze and implement 

efficiently
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Breaking a Cipher
• Real World Standard

– Attacker can decrypt secret messages
– Reasonable amount of work, actual amount of 

ciphertext

• “Academic” Standard
– Attacker can determine something about the 

message
– Given unlimited number of chosen plaintext -

ciphertext pairs
– Can perform a very large number of computations, 

up to, but not including, 2n, where n is the key size in 
bits (i.e. assume that the attacker can’t mount a brute 
force attack, but can get close)
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AES Evaluation Criteria

1. Security
Most important, but hardest to measure

Resistance to cryptanalysis, randomness of output

2. Cost and Implementation Characteristics
Licensing, Computational, Memory
Flexibility (different key/block sizes), hardware 

implementation

From RC5 to RC6
in seven easy steps

From Rivest’s RC6 talk, http://www.rsasecurity.com/rsalabs/aes/
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Description of RC6
• RC6-w/r/b parameters:

– Word size in bits:       w ( 32 )  ( lg(w) = 5 )
– Number of rounds:     r ( 20 )
– Number of key bytes : b ( 16, 24, or 32 )

• Key Expansion: 
– Produces array S[0, … 2r + 3]  of  w-bit round 

keys.

• Encryption and Decryption:
– Input/Output in 32-bit registers A,B,C,D
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Design Philosophy
• Leverage experience with RC5: use 

data-dependent rotations to achieve a 
high level of security.

• Adapt RC5 to meet AES requirements 
• Take advantage of a new primitive for 

increased security and efficiency: 32x32 
multiplication, which executes quickly on 
modern processors, to compute rotation 
amounts.
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Data-Dependent Rotations
hgfedcba << 3

cbahgfed

X ⊕ X’ = ∆ X
X1 = X << f(X, k) X1’ = X’ << f (X’, k)

Can we say anything about ∆X1 = X1 ⊕ X1 ’?
Same number of bits are still different, but can’t tell 
which ones.

<<< n means rotate left by amount in low order log2w
bits of n (word size w = 32, 5 bits)
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(1) Start with RC5

RC5 encryption inner loop:

for i  =  1  to r  do
A = ((A ⊕ B)  <<< B) + S [i]
(A, B) = (B, A)

<<< only depends on 5 bits of B
Can RC5 be strengthened by having rotation 

amounts depend on all the bits of B?
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• Modulo function?
Use low-order bits of (B mod d)

• Linear function?
Use high-order bits of (c × B)

• Quadratic function?
Use high-order bits of (B × (2B+1))

Better rotation amounts?

Too slow!

Hard to pick c well
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Properties B × (2B+1) 
should have:

1. One-to-one (can invert for decryption)
2. Good distribution – if B is well 

distributed, so is B × (2B + 1)
3. High order bits depend on all bits of B 

(diffusion)
4. Easy to calculate efficiently (if your 

hardware has 32-bit multiplies)
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B × (2B+1) is one-to-one mod 2w

Proof: By contradiction: Assume B ≠ C 
and B × (2B + 1) = C × (2C + 1) mod 2w

then
B × (2B + 1) - C × (2C + 1) = 0 mod 2w

2B2 + B        - (2C2 + C)       = 0 mod 2w

(B - C) × (2B+2C+1) = 0 mod 2w 

But (B-C) is nonzero and (2B+2C+1) is odd; their 
product can’t be zero!     o

Corollary:
B  uniform à B × (2B+1) uniform 
(and high-order bits are uniform too!)
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3. High-order bits of B × (2B+1)  
depend on all bits of B (diffusion)

B = B31B30B29 … B1B0 in binary,
× T = 2B+1 = B30B29B28 … B01

B31B30B29 … B1B0
B0 * B31B30B29 …    B1B0

B1 * B31B30B29 …  B1B0

+ …
f(B) = F31F30F29 … F1F0

Fi = (1 × Bi) + Σ(Bj × Bi-j-1) + Ci - 1 mod 2
j = 0..i-1
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Diffusion, cont.
Fi = Bi + Σ(Bj × Bi-j -1) + Ci - 1 mod 2

j= 0..i-1

Ci = Bi + Σ(Bj × Bi-j -1) + Ci - 1 div 2
j= 0..i-1

• Flipping bit Bi
– Leaves bits F0 … F i - 1 of  f(B) unchanged,
– Flips bit F i always
– Flips bit F j for j > i, with probability approximately ½

• Different for different j’s, but F j depends on Bi for all i > j.
– Is likely to change some high-order bits
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(2) Quadratic Rotation Amounts 

for i  =  1  to r  do
t = (B × (2B + 1)) <<< 5
A = ((A ⊕ B) <<< t)  + S[i]
(A, B) = (B, A)

But now much of the output of multiplication is 
being wasted (only 5 top bits used)...
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(3) Use  t, not B, as xor input

for i =  1  to r do
t = (B × (2B + 1)) <<< 5
A = ((A ⊕ tt) <<< t)  + S[i]
( A, B ) = ( B, A )

RC5 used 64 bit blocks  
AES requires 128-bit blocks
Double size of A and B?

64-bit registers and operations are poorly 
supported by typical compilers and hardware  
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(4) Do two RC5’s in parallel

M = A0B0A1B1A2B2A3B3…
M = A0B0C0D0A1B1C1D1…
for i = 1 to r do

t = (B × (2B + 1)) <<< 5
A = ((A ⊕ t) <<< t) + S[2i2i]    
( A, B ) = ( B, A )
u = (D × (2D + 1)) <<< 5
C = ((C ⊕ u) <<< u) + S[2i + 1]
( C, D ) = ( D, C )

Same thing 
for next 64 
bits
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(5) Mix up data between copies
Switch rotation amounts between 
copies, and cyclically permute registers 
instead of swapping: 
for i  =  1  to r  do

t =  (B x (2B + 1)) <<< 5
u = (D x (2D + 1)) <<< 5
A = ((A ⊕ t) <<< uu) + S[2i]
C = ((C ⊕ u) <<< tt) + S[2i + 1]
(A, B, C, D) = (B, C, D, A)(A, B, C, D) = (B, C, D, A)
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One Round of RC6

55

ff

A B C D

<<<<<<

<<< <<<

S[2i] S[2i+1]

A B C D

t u
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Key Expansion (Same as RC5’s)
• Input:    array L [0 … c-1] of input key words
• Output: array S [0 … 43]  of round key words
• Procedure:

S [0] = 0xB7E15163
for i = 1 to 43 do S[i] = S[i-1] + 0x9E3779B9
A = B = i = j = 0
for s = 1  to 132  do

A = S[ i ] = (S[ i ] + A + B) <<< 3
B = L[ j ] = (L[ j ] + A + B) <<< (A + B )
i = (i + 1) mod 44
j = (j + 1) mod c

= Odd[(e-2)232]

= Odd[(Φ-1)232]
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What do π/e/Φ have to do with 
cryptography?

• Used by RC5, RC6, Blowfish, etc. in 
magic constants

• Mathematical constants have good 
pseudorandom distribution

• Since they are public and well-known, 
no fear that choice is a trap door
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(6) Add Pre- and Post-Whitening
B = B + S[ 0 ]
D = D + S[ 1 ]
for i  =  1  to r  do

t  =  ( B  x  ( 2B  + 1 ) )  <<<  5
u  =  ( D  x  ( 2D + 1 ) )  <<<  5
A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ]
C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ]
(A, B, C, D)  =  (B, C, D, A) 

A = A + S[ 2r + 2 ]
C =  C + S[ 2r + 3 ]
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(7) Set r = 20 for high security 

Final RC6

(based on analysis)B = B + S[ 0 ]
D = D + S[ 1 ]
for i  =  1  to 20  do

t  =  (B x (2B  + 1))  <<<  5
u =  (D x (2D + 1))  <<<  5
A = ((A ⊕ t) <<<  u )  +  S[2i]
C = ((C ⊕ u) <<<  t )  +  S[2i + 1]
(A, B, C, D)  =  (B, C, D, A)

A = A + S[42]
C = C + S[43]
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RC6 Decryption (for AES)
C =  C – S [43]
A =  A – S [42]
for i  = 20 downto 1 do

(A, B, C, D)  =  (D, A, B, C)
u = (D  x  (2D + 1))  <<< 5 
t  = (B  x  (2B  + 1))  <<< 5
C = ((C – S [2i + 1]) >>> t) ⊕ u
A = ((A – S [2i]) >>> u ) ⊕ t

D = D - S[1] 
B = B - S[0]
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Blowfish
• [Schneier93]
• 64-bit block cipher
• Much faster than DES
• Variable key length: 

32-448 bits
• Many attempted crytanalyses, none 

successful yet
• Widely used: ssh, OpenBSD, PGPFone
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Key-Dependent S-Boxes

• Differential Cryptanalysis depends on 
analyzing S-box input/output different 
probabilities

• Change the S-boxes so you can’t do 
analysis
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Blowfish → Twofish
• Blowfish: runs encryption 521 times to 

produce S-boxes
– Too slow for AES, requires too much 

memory for smart cards
• Twofish

– Provides options for how many key-
dependant S-boxes (tradeoff security/time-
space)

– Also: increase block size (128 required by 
AES), change key schedule, etc.
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Two Fish

From http://www.ddj.com/articles/1998/9812/9812b/9812bf1.htm
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Choosing AES
(Table from Twofish Paper)

104 KB2.671816Twofish

98 KB1.112018Rijndael

48 KB1.184315RC6

85 KB1.903423MARS

341 KB3.566962Serpent

Simplicity 
(code size)

Safety 
Factor

Speed 
(8)

Speed 
(32)Cipher

(cycles/byte encrypt)
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AES Winner: Rijndael
Invented by Joan Daemen and Vincent Rijmen

Rijndael. A variant of Square, the chief 
drawback to this cipher is the difficulty 
Americans have pronouncing it. 

Bruce Schneier

Selected as AES, October 2000
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Rijndael Overview
• Key sizes: 128, 192, 256 bits
• Block sizes: 128, 192, 256 bits
• 10 rounds (including initial AddKey)

– Academic break on 9 rounds, 256-bit key 
gives safety factor of 10/9 = 1.11
• Requires 2224 work and 285 chosen related-key

plaintexts (why is this considered a break for 
256-bit key but not 128-bit key?)

“Our results have no practical significance for 
anyone using the full Rijndael.”



8

17 Sept 2001 University of Virginia CS 588 43

Rijndael Round
1. Byte substitution 

using non-linear S-
Box (independently 
on each byte)

2. Shift rows (square)
3. Mix columns –

matrix multiplication 
by polynomial

4. XOR with round key
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Rijndael Design

• Resistant to linear and differential 
cryptanalysis

• Differential trail
– Probability that a given difference a’ 

pattern at input produces an output 
difference of b’ 

– Choose S-box and multiplication 
polynomial to minimize maximum 
difference probability
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Charge

• Designing and picking a Cipher that will last 
50 years is hard
– Advances in computing power
– Advances in cryptanalysis
– Performance/security tradeoff keeps changing –

need something that works today and in 2050

• This week: talk or email me about your 
project ideas

• Next time:
– Key Distribution


