Lecture 7:

Key Distribution

The era of "electronic mail" [Potter1977] may soon be upon us; we must ensure that two important properties of the current "paper mail" system are preserved: (a) messages are private, and (b) messages can be signed.
R. Rivest, A. Shamir and L. Adleman. A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM, January 1978. (The original RSA paper.)

CS588: Security and Privacy
University of Virginia
David Evans
Computer Science http://www.cs.virginia.edu/~evans

Traditional Cryptology

- Given a secure channel to transmit a shared secret key, symmetric cryptosystems amplify and time-shift that channel:
- Can transmit bigger secrets over an insecure channel (except one-time pad)
- Can transmit later secrets over an insecure channel
- But, the initial secure channel is required

Merkle's Puzzles

- Ralph Merkle [1974]
- Alice generates 2^{20} messages: "This is puzzle x. The secret is y." (x and y are random numbers)
- Encrypts each message using symmetric cipher with a different key.
- Sends all encrypted messages to Bob

Merkle's Puzzles, cont.

- Bob chooses random message, performs brute-force attack to recover plaintext and secret y
- Bob sends x (clear) to Alice
- Alice and Bob use y to encrypt messages

Is this secure?

- Alice: symmetric cipher DES $\sim 2^{55}$ expected brute force work to break DES
- Eve: has to break the 2^{20} to find which one matches x.
$\sim 2^{19}$ * 2^{55} expected work
- Alice and Bob change keys frequently enough since it is less work to agree to a new key
- Why not increase number of puzzle messages?

Birth of Public Key Cryptosystems

- 1969 - ARPANet born: 4 sites
- Whitfield Diffie starts thinking about strangers sending messages securely
- 1974 - Whitfield Diffie gives talk at IBM Iab
- Audience member mentions that Matrin Hellman (Stanford prof) had spoke about key distribution
- That night - Diffie starts driving 5000km to Palo Alto
- Diffie, Hellman and Ralph Merkle work on key distribution problem

We stand today on the brink of a revolution in cryptography. The development of cheap digital hardware has freed it from the design limitations of mechanical computing and brought the cost of high grade cryptographic devices down to where they can be used in such commercial applications as remote cash dispensers and computer terminals. In turn, such applications create a need for new types of cryptographic systems which minimize the necessity of secure key distribution channels and supply the equivalent of a written signature. At the same time, theoretical developments in information theory and computer science show promise of providing provably secure cryptosystems, changing this ancient art into a science.

Diffie and Hellman, November 1976.

19 Sept 200 University of Virginia CS 588 18

Diffie-Hellman Key Agreement

1. Choose public numbers: q (large prime number), α (primitive root of q)
2. A generates random X_{A} and sends B :
$\mathrm{Y}_{\mathrm{A}}=\alpha^{\mathrm{X}_{\mathrm{A}}} \bmod q$.
3. B generates random X_{B} and sends A :
$\mathrm{Y}_{\mathrm{B}}=\alpha^{\mathrm{X}_{\mathrm{B}}} \bmod q$.
4. A calculates secret key: $\mathrm{K}=\left(\mathrm{Y}_{\mathrm{B}}\right)^{\mathrm{X}_{\mathrm{A}}} \bmod q$.
5. B calculates secret key: $\mathrm{K}=\left(\mathrm{Y}_{\mathrm{A}}\right)^{\mathrm{X}_{\mathrm{B}}} \bmod q$.

Example

- What is a primitive root for $\mathrm{q}=11$?

$2^{1} \equiv_{11} 2$	$2^{6}=64 \equiv_{11} 9$
$2^{2} \equiv_{11} 4$	$2^{7}=128 \equiv_{11} 7$
$2^{3} \equiv_{11} 8$	$2^{8}=256 \equiv_{11} 3$
$2^{4}=16 \equiv_{11} 5$	$2^{9}=512 \equiv_{11} 6$
$2^{5}=32 \equiv_{11} 10$	$2^{10}=1024 \equiv_{11} 1$

$2^{2} \equiv_{11} 4$
$2^{7}=128 \equiv_{11} 7$
$2^{3} \equiv_{11} 8$
$2^{9}=512 \equiv_{11} 6$
$2^{5}=32 \equiv_{11} 10$
$2-1024 \equiv_{11}$

Finding Primitive Roots

- Theorem: All prime numbers have primitive roots.
- Book proves this using Proof by Forward Reference
"(Proof later.)" (p .137) and "this will be proven later" (p. 230), "which will be proven only later" (p. 231), "which is known to exist" (p. 445).
- We'll use the same technique
- In practice, it is easy to find primitive roots for prime numbers by guessing. Almost $1 / 2$ of guesses will work (next class we will see why).

Diffie-Hellman Example

1. Choose public numbers: q (large prime number), α (generator $\bmod q$):

$$
q=11, \alpha=2
$$

2. A generates random X_{A} and sends B :
$\mathrm{Y}_{\mathrm{A}}=\alpha^{\mathrm{X}_{\mathrm{A}}} \bmod q$.
$\mathrm{X}_{\mathrm{A}}=4, \mathrm{Y}_{\mathrm{A}}=2^{4} \bmod 11=16 \bmod 11=5$
3. B generates random X_{B} and sends A :
$\mathrm{Y}_{\mathrm{B}}=\alpha^{\mathrm{X}_{\mathrm{B}}} \bmod q$.
$X_{B}=6, Y_{B}=2^{6} \bmod 11=64 \bmod 11=9$
Example from Tom Dunigan's notes: hitp://wwwos. utk. edu/-dunigan/cs594 - cnsoo/class 14. htm/
19 Sept 200
University of Virginia CS 588

Diffie-Hellman Example, cont.

$$
\begin{aligned}
& q=11, \alpha=2 \\
& \mathrm{X}_{\mathrm{A}}=4, \mathrm{Y}_{\mathrm{A}}=5 \quad \mathrm{X}_{\mathrm{B}}=6, \mathrm{Y}_{\mathrm{B}}=9
\end{aligned}
$$

4. A calculates secret key: $K=\left(Y_{B}\right)^{X_{A}}$ $\bmod q$.
$\mathrm{K}=9^{4} \bmod 11=6561 \bmod 11=5$.
5. B calculates secret key: $\mathrm{K}=\left(\mathrm{Y}_{\mathrm{A}}\right)^{\mathrm{X}_{\mathrm{B}}}$ $\bmod q$.
$\mathrm{K}=5^{6} \bmod 11=15625 \bmod 11=5$.

Is it magic? Things to Prove:

1. They generate the same keys:
$\mathrm{K}=\left(\mathrm{Y}_{\mathrm{B}}\right)^{\mathrm{X}_{\mathrm{A}}} \bmod q=\left(\mathrm{Y}_{\mathrm{A}}\right)^{\mathrm{X}_{\mathrm{B}}} \bmod q$
2. An eavesdropper cannot find K from any transmitted value:
$q, \alpha, \mathrm{Y}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{B}}$

Modular Exponentiation

$(a \bmod q)^{b} \operatorname{modq}=a^{b} \operatorname{modq}$
$(7 \bmod 6)^{2} \bmod 6=7^{2} \bmod 6$
$1^{2} \bmod 6=49 \bmod 6$

Proof by example?
(a*b) $\bmod \mathrm{n}=\mathrm{x}$
$\mathrm{x}+(\mathrm{n} * \mathrm{~d} 0)=\mathrm{a} * \mathrm{~b}$
$\mathrm{x}=\mathrm{a} * \mathrm{~b}-(\mathrm{n} * \mathrm{~d} 0)$
$a \bmod n=y \Rightarrow y=a-(n * d 1)$
$b \bmod n=z \Rightarrow z=b-(n * d 2)$
$(\mathrm{a} \bmod \mathrm{n}) *(\mathrm{~b} \bmod \mathrm{n}) \bmod \mathrm{n}$
$=(\mathrm{a}-(\mathrm{n} * \mathrm{~d} 1)) *(\mathrm{~b}-(\mathrm{n} * \mathrm{~d} 2)) \bmod \mathrm{n}$
$=(\mathrm{a} * \mathrm{~b}+(\mathrm{a} *(\mathrm{n} * \mathrm{~d} 2)$
$-\mathrm{b} *(\mathrm{n} * \mathrm{~d} 1)+(\mathrm{n} * \mathrm{~d} 1)(\mathrm{n} * \mathrm{~d} 2)) \bmod \mathrm{n}$
$=\mathrm{a} * \mathrm{~b} \bmod \mathrm{n} \quad($ all terms with $\mathrm{n} * \operatorname{are} 0 \bmod \mathrm{n})$
19 Sept 2001
University of Virginia CS 588

- First prove:
$(\mathrm{a} * \mathrm{~b}) \bmod \mathrm{q}=(\mathrm{a} \bmod \mathrm{q}) *(\mathrm{~b} \bmod \mathrm{q}) \bmod \mathrm{q}$
- Then, by induction,
$(a \bmod q)^{b} \operatorname{modq}=a^{b} \operatorname{modq}$
since $a^{b}=a * a^{b-1}$ and $a^{1}=a$.

2. Secure from Eavesdropper

1. Keys Agree

- Prove $\mathrm{K}=\left(\mathrm{Y}_{\mathrm{B}}\right)^{\mathrm{X}_{\mathrm{A}}} \bmod q=\left(\mathrm{Y}_{\mathrm{A}}\right)^{\mathrm{X}_{\mathrm{B}}} \bmod q$.

| | $\left(\mathrm{Y}_{\mathrm{B}}\right)^{\mathrm{X}_{\mathrm{A}}} \bmod q$ |
| :--- | :--- |$\quad\left(\mathrm{Y}_{\mathrm{A}}\right)^{\mathrm{X}_{\mathrm{B}}} \bmod q$.

QED.

Modular Exponentiation

$$
\mathrm{a}^{\mathrm{b}-1} \mathrm{and} \mathrm{a}^{\mathrm{I}}=\mathrm{a} .
$$

-

- An eavesdropper cannot find
$\mathrm{K}=\left(\mathrm{Y}_{\mathrm{B}}\right)^{\mathrm{X}_{\mathrm{A}}} \bmod q=\left(\mathrm{Y}_{\mathrm{A}}\right)^{\mathrm{X}_{\mathrm{B}}} \bmod q$ from any transmitted value:

$$
q, \alpha, \mathrm{Y}_{\mathrm{A}}=\alpha^{\mathrm{x}_{\mathrm{A}}} \bmod q, \mathrm{Y}_{\mathrm{B}}=\alpha^{\mathrm{x}_{\mathrm{B}}} \bmod q
$$

- Attacker needs to solve $\mathrm{Y}_{\mathrm{A}}=\alpha^{\mathrm{X}_{\mathrm{A}}} \bmod q$ for X_{A}
- Finding discrete logarithms is (probably) hard!
- Best known algorithm: $e^{\left.\left((\ln q)^{1 / 3} \ln (\ln q)\right) 2 / 3\right)}$

Diffie-Hellman Use

- SSL
- Cisco encrypting routers
- Sun secure RPC
- etc...

Knapsack Ciphers

- [Merkle, Hellman 78]
- Knapsack Problem:
- Given positive integers $a_{1}, a_{2}, \ldots, a_{n}$ and a
positive integer b find a subset of a s sum to b.
- In general, this is NP-complete
- Can try 2^{n} possible subsets, check each one in polynomial time
- If we could solve it in polynomial time, we could solve all other NP problems in P also
- Proof: reduce to satisfiability (\sim vehement assertion)
19 Sept 2001
University of Virginia CS 588

Public-Key Cryptography

- Same paper introduced concept of Public-Key Cryptography
- Public algorithm: E
- Private algorithm: D
- Identity: $\mathrm{E}(\mathrm{D}(m))=\mathrm{D}(\mathrm{E}(m))=m$
- Secure: cannot determine E from D
- But didn't know how to find suitable E and D

Encryption

- Message $=\left(x_{1}, \ldots ., x_{n}\right) \quad$ (bit vector)
- Knapsack vector: $a=\left(a_{1}, \ldots ., a_{n}\right)$
- Ciphertext: $\mathrm{b}=x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{\mathrm{n}} a_{\mathrm{n}}$
- Decrypt by finding subset of a_{i} 's that sum to b. Message bits corresponding to i 's are 1.
- Unique decryption?
- Depends on choice of knapsack: can't have duplicate elements, can't have elements equal to sum of subset of other elements

19 Sept 2001
University of Virginia CS 588

Superincreasing Knapsack

- $a=\left(a_{1}, \ldots ., a_{n}\right)$ where for all i,

$$
a_{i}>a_{1}+a_{2}+\ldots+a_{\mathrm{i}-1}
$$

- If a is superincreasing, how hard is decryption? for $\mathrm{i}=\mathrm{n}$ to 1 step -1 if $b>=a_{i}$ then $b_{i}=1 \quad b=b-a_{i}$

else

$$
b_{i}=0
$$

19 Sept 200 University of Virginia CS 588

Knapsack Encryption

To send a message,
$\mathrm{b}=x_{1} c_{1}+x_{2} c_{2}+\ldots+x_{\mathrm{n}} c_{\mathrm{n}}$
Alice decrypts by:
$t^{-1} \mathrm{~b} \bmod \mathrm{~m}=t^{-1} x_{1} c_{1}+t^{-1} x_{2} c_{2}+\ldots+t^{-1} x_{\mathrm{n}} c_{\mathrm{n}}$
$c=\left(t a_{1} \bmod m, \ldots, t a_{n} \bmod m\right)$ so
$t^{-1} x_{1} c_{1}=a_{1} x_{1} \bmod m$
$t^{-1} \mathrm{~b} \operatorname{modm}=x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{\mathrm{n}} a_{\mathrm{n}}$
Easy for Alice to compute x 's now using superincreasing knapsack.

19 Sept 2001

Example

Private key: $(3,5,9,20,44)$

$$
\begin{aligned}
& t=67, m=89 \\
& t^{-1}=4 \text { since } 67^{*} 4 \\
& 3^{*} 67=201 \bmod 89 \\
&{ }^{*} 69=23, \ldots
\end{aligned}
$$

Public key: $(23,68,69,5,11)$
Encrypt M $=(01011)$

$$
C=68+5+11=84
$$

Decrypt
C * $4=69 \bmod 89$
$=5+20+44=(01011)$
19 Sept 2001

Charge

- Next time:
- Rivest, Shamir, Adelman: First solution to finding suitable E and D
-Identity: $\mathrm{E}(\mathrm{D}(m))=\mathrm{D}(\mathrm{E}(m))=m$
- Secure: cannot determine E from D
- Read the paper!
- Go somewhere appropriate: this is perhaps the most important paper in past 30 years!
- Identify 2 questionable statements in the paper

19 Sept 200
University of Virginia CS 588
42

