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David Evans
http://www.cs.virginia.edu/~evans

CS588: Security and Privacy
University of Virginia
Computer Science

Lecture 7:
Key Distribution

The era of “electronic mail” [Potter1977] may soon be upon 
us; we must ensure that two important properties of the 
current “paper mail” system are preserved: (a) messages 
are private, and (b) messages can be signed.

R. Rivest, A. Shamir and L. Adleman.  A Method for 
Obtaining Digital Signatures and Public-Key 

Cryptosystems. Communications of the ACM, January 
1978.  (The original RSA paper.)
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Traditional Cryptology
• Given a secure channel to transmit a 

shared secret key, symmetric 
cryptosystems amplify and time-shift that 
channel:
– Can transmit bigger secrets over an insecure 

channel (except one-time pad)
– Can transmit later secrets over an insecure 

channel
• But, the initial secure channel is required
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Key Distribution
• All the cryptosystems we have seen 

depend on two parties having a shared 
secret

• Distributing secret keys is hard and 
expensive

• Can two people communicate securely 
without having to meet first and 
establish a key?
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Trust a Third Party

Keys “R” Us 
knows KA, KB ...

Alice
Bob

E (“Bob”, KA)

E (KAB, KA) E (KAB, KB)

E (M, KAB)

Generates random KAB

E (“Alice” || KAB, KB)

How can Alice and Bob securely provide 
their keys to Keys “R” Us?
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Merkle’s Puzzles

• Ralph Merkle [1974]
• Alice generates 220 messages: “This is 

puzzle x.  The secret is y.” (x and y are 
random numbers)

• Encrypts each message using symmetric 
cipher with a different key.

• Sends all encrypted messages to Bob
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Merkle’s Puzzles, cont.

• Bob chooses random message, 
performs brute-force attack to recover 
plaintext and secret y

• Bob sends x (clear) to Alice
• Alice and Bob use y to encrypt 

messages
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Is this secure?
• Alice: symmetric cipher DES

~255 expected brute force work to break DES
• Eve: has to break the 220 to find which one 

matches x.
~ 219 * 255 expected work

• Alice and Bob change keys frequently 
enough since it is less work to agree to a 
new key

• Why not increase number of puzzle 
messages?
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Padlocked Boxes

Alice

Hi!
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Padlocked Boxes

Alice H
i!

Alice’s Padlock

Alice’s Padlock Key

EA(M)
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Padlocked Boxes

Alice

Alice’s Padlock Key

Shady 
Sammy’s 

Slimy 
Shipping 
Service
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Padlocked Boxes

Alice

H
i!

Bob

Bob’s Padlock

Bob’s Padlock Key
Alice’s Padlock Key

EB(         )EA(M)
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Padlocked Boxes

Alice

H
i!

Bob

Bob’s Padlock Key
Alice’s Padlock Key

EB(EA(M))
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Padlocked Boxes

Alice

H
i!

Bob

Bob’s Padlock Key
Alice’s Padlock Key

DA(EB(EA(M))) = EB(M)
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Padlocked Boxes

Alice

H
i!

Bob

Bob’s Padlock Key

EB(M)
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Padlocked Boxes

Alice

H
i!

Bob

Bob’s Padlock Key

Hi!
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Secret Paint Mixing
Analogy due to Simon Singh, The Code Book.

Alice Bob

Yellow paint (public) 

Alice’s 
Secret 
Color

Bob’s 
Secret 
Color

CA = Yellow + Purple
CB = Yellow + Red

K = Yellow + Red + Purple K = Yellow + Purple + Red

Eve
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Birth of Public Key Cryptosystems

• 1969 – ARPANet born: 4 sites
– Whitfield Diffie starts thinking about strangers 

sending messages securely

• 1974 – Whitfield Diffie gives talk at IBM lab
– Audience member mentions that Matrin Hellman 

(Stanford prof ) had spoke about key distribution

• That night – Diffie starts driving 5000km to 
Palo Alto

• Diffie, Hellman and Ralph Merkle work on  
key distribution problem
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We stand today on the brink of a revolution in 
cryptography. The development of cheap digital 
hardware has freed it from the design limitations of 
mechanical computing and brought the cost of high 
grade cryptographic devices down to where they can be 
used in such commercial applications as remote cash 
dispensers and computer terminals. In turn, such 
applications create a need for new types of 
cryptographic systems which minimize the necessity of 
secure key distribution channels and supply the 
equivalent of a written signature. At the same time, 
theoretical developments in information theory and 
computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science. Diffie and Hellman, November 1976.
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Diffie-Hellman Key Agreement
1. Choose public numbers: q (large prime 

number), α (primitive root of q)
2. A generates random XA and sends B: 

YA = αXA mod q.
3. B generates random XB and sends A:

YB = α XB mod q.
4. A calculates secret key: K = (YB) XA mod q.
5. B calculates secret key: K = (YA) XB mod q.
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What’s a primitive root?
• α is a primitive root of q if for all 1 ≤ n < q, 

there is some m, 1 ≤ m < q such that 
αm = n mod q

• Given α, n and q can we solve for m?
– Yes: there is only one possible m
– But, it might be hard to find

• Discrete logarithm: given α, n, andq find 0 
≤ m < q such that αm = n mod q .
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Example
• What is a primitive root for q = 11?

21 ≡11 2 26 = 64 ≡11 9
22 ≡11 4 27 = 128 ≡11 7
23 ≡11 8 28 = 256 ≡11 3
24 = 16 ≡11 5 29 = 512 ≡11 6
25 = 32 ≡11 10 210 = 1024 ≡11 1
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Finding Primitive Roots
• Theorem: All prime numbers have primitive 

roots.
– Book proves this using Proof by Forward Reference

“(Proof later.)” (p .137) and “this will be proven 
later” (p. 230), “which will be proven only later” 
(p. 231), “which is known to exist ” (p. 445). 

– We’ll use the same technique

– In practice, it is easy to find primitive roots for prime 
numbers by guessing.  Almost ½ of guesses will 
work (next class we will see why).
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Diffie-Hellman Example
1. Choose public numbers: q (large prime 

number), α (generator mod q):
q = 11, α = 2

2. A generates random XA and sends B: 
YA = αXA mod q.
XA = 4, YA = 24 mod 11 = 16 mod 11 = 5

3. B generates random XB and sends A:
YB = α XB mod q.
XB = 6, YB = 26 mod 11 = 64 mod 11 = 9

Example from Tom Dunigan’s notes: http://www.cs.utk .edu/~dunigan/cs594 -cns00/class14.html
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Diffie-Hellman Example, cont.

q = 11, α = 2
XA = 4, YA = 5    XB = 6, YB = 9

4. A calculates secret key: K = (YB) XA 

mod q.
K = 94 mod 11 = 6561 mod 11 = 5.

5. B calculates secret key: K = (YA) XB 

mod q.
K = 56 mod 11 = 15625 mod 11 = 5.
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Is it magic? Things to Prove:

1. They generate the same keys: 
K = (YB) XA mod q = (YA) XB mod q

2. An eavesdropper cannot find K from 
any transmitted value:

q, α, YA, YB
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1. Keys Agree

• Prove K = (YB)XA mod q = (YA)XB mod q.

(YB)XA mod q (YA)XB mod q
= (αXB mod q)XA mod q     = (αXA mod q)XB mod q
= (αXB)XA mod q = (αXA)XB mod q
= αXBXA mod q = αXAXB mod q

QED.
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Modular Exponentiation

(a mod q)b mod q = ab mod q
(7 mod 6)2 mod 6 = 72 mod 6

12 mod 6 = 49 mod 6

Proof by example?
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Modular Exponentiation

• First prove: 
(a * b) mod q = (a mod q) * (b mod q) mod q

• Then, by induction, 
(a mod q)b mod q = ab mod q
since ab = a * ab-1 and a1 = a.
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Modular Arithmetic
(a * b) mod n = x

x + (n * d0) = a * b
x = a * b – (n * d0)

a mod n = y ⇒ y = a – (n * d1) 
b mod n = z ⇒ z = b – (n * d2)

(a mod n) * (b mod n) mod n
= (a – (n * d1)) * (b – (n * d2)) mod n
= (a * b + (a * (n * d2) 

– b * (n * d1) + (n * d1)(n * d2)) mod n
= a * b mod n (all terms with n * are 0 mod n)
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2. Secure from Eavesdropper
• An eavesdropper cannot find 

K = (YB)XA mod q = (YA)XB mod q
from any transmitted value:

q, α, YA = αXA mod q, YB = α XB mod q
• Attacker needs to solve YA = αXA mod q for XA

• Finding discrete logarithms is (probably) hard!
– Best known algorithm: e((ln q)1/3 ln (ln q)) 2/3)
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Secure from Active 
Eavesdropper?

Alice

Public: q, α

Secret: XA

YA = αXA mod q
Bob

Secret: XB

YB = α XB mod q

K = (YB)XA mod q K = (YA)XB mod q
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Secure from Active 
Eavesdropper?

Alice

Public: q, α

Secret: XA

YA = αXA mod q

Bob

Secret: XB

YB = α XB mod q
KAE = (YE)XA mod q

KEB = (YE)XB mod q

YE = αXE mod q

Secret: XE

YE = α XE mod q
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Diffie-Hellman Use

• SSL
• Cisco encrypting routers
• Sun secure RPC
• etc...
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Public-Key Cryptography
• Same paper introduced concept of 

Public-Key Cryptography
• Public algorithm: E
• Private algorithm: D
• Identity: E (D(m)) = D (E(m)) = m
• Secure: cannot determine E from D
• But didn’t know how to find suitable E

and D
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Knapsack Ciphers
• [Merkle, Hellman 78]
• Knapsack Problem: 

– Given positive integers a1, a2 , …, an and a 
positive integer b find a subset of a’s that sum 
to b.

– In general, this is NP-complete
• Can try 2n possible subsets, check each one in 

polynomial time
• If we could solve it in polynomial time, we could 

solve all other NP problems in P also
• Proof: reduce to satisfiability (~ vehement 

assertion)
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Encryption

• Message = (x1, …., xn)   (bit vector)
• Knapsack vector: a = (a1, …., an)
• Ciphertext: b = x1a1 + x2a2 + …+ xnan 

• Decrypt by finding subset of ai’s that sum to 
b.  Message bits corresponding to i’s are 1.

• Unique decryption?
– Depends on choice of knapsack: can’t have 

duplicate elements, can’t have elements equal to 
sum of subset of other elements
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Superincreasing Knapsack

• a = (a1, …., an) where for all i, 
ai > a1+ a 2 + … + ai - 1

• If a is superincreasing, how hard is 
decryption? for i = n to 1 step –1

if b >= ai then 
bi = 1  b = b – ai

else
bi = 0
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Disguise the Knapsack
Instead of using a = (a1, …., an) use
c = (ta1 mod m , …., tan mod m) 
where 

m > a1 + a2 + … + an

and t is random secret, relatively prime to m
(Hence, there is an inverse t-1 mod n)

Alice publishes c as her “public knapsack”.
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Knapsack Encryption
To send a message, 

b = x1c1 + x2c2 + …+ xncn
Alice decrypts by:

t-1 b mod m = t-1x1c1 + t-1x2c2 + …+ t-1 xncn

c = (ta1 mod m, …., tan mod m) so 

t-1x1c1 = a1x1 mod m

t-1 b mod m = x1a1 + x2a2 + …+ xnan

Easy for Alice to compute x’s now using 
superincreasing knapsack.
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Example
Private key: (3, 5, 9, 20, 44)

t = 67, m = 89
t-1 = 4 since 67 * 4 = 1 mod 89

3 * 67 = 201 mod 89 = 23, …
Public key: (23, 68, 69, 5, 11)
Encrypt M = (01011) 

C = 68 + 5 + 11 = 84
Decrypt

C * 4 = 69 mod 89 
= 5 + 20 + 44 = (01011)
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Knapsack Security?
• Security relied on proof that solving general 

knapsack problem is NP-hard
• But, adversary doesn’t have to solve general 

knapsack problem – just convert to 
superincreasing knapsack

• Shamir [1983] showed it is possible to do this in 
polynomial time without known t and m

• Lesson: just because a cipher uses a provably 
hard problem, doesn’t mean there isn’t a way of 
breaking the cipher without solving that problem
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Charge

• Next time:
– Rivest, Shamir, Adelman: First solution to 

finding suitable E and D
• Identity: E (D (m)) = D (E (m)) = m
• Secure: cannot determine E from D

• Read the paper! 
– Go somewhere appropriate: this is perhaps the 

most important paper in past 30 years!
– Identify 2 questionable statements in the paper


