CS588 Notes on Entropy and Perfect Ciphers

Entropy: Amount of information in a message
$\mathrm{H}(\mathrm{M})=-\Sigma \mathrm{P}\left(M_{\mathrm{i}}\right) \log \mathrm{P}\left(M_{\mathrm{i}}\right)$ over all possible messages M_{i}
If there are n equally probable messages with a binary alphabet,

$$
\mathrm{H}(\mathrm{M})=\log _{2} n
$$

Absolute Rate (R): how much information can be encoded

$$
\mathrm{R}=\log _{2} Z \quad(\mathrm{Z}=\text { size of alphabet })
$$

Actual Rate (r): how much information can be encoded
$\mathrm{r}=\mathrm{H}(M) / N$
number of possible N -letter messages
Redundancy (D):
$\mathrm{D}=\mathrm{R}-\mathrm{r}$
In English, D $\approx 1-.28=.72$ letters/letter
Entropy of cryptosystem: ($\mathrm{K}=$ number of possible keys)
$\mathrm{H}(K)=\log _{\text {Alphabet Size }} K \quad$ if all keys equally likely

Unicity distance:

$$
\mathrm{U}=\mathrm{H}(K) / D
$$

Perfect Cipher:

$$
\forall \mathrm{i}, \mathrm{j}: P\left(M_{\mathrm{i}} \mid C_{\mathrm{j}}\right)=P\left(M_{\mathrm{i}}\right)
$$

A cipher is perfect iff:

$$
\forall M, C \quad P(C \mid M)=P(C)
$$

Or, equivalently:

$$
\forall M, C \quad P(M \mid C)=P(M)
$$

Perfect Cipher Keyspace Theorem: If a cipher is perfect, there must be at least as many keys (l) are there are possible messages (n).

Proof:

Suppose there is a perfect cipher with $l<n$. (More messages than keys.) Let C_{0} be some ciphertext with $\mathrm{p}\left(\mathrm{C}_{0}\right)>0$. There exist
m messages M such that $\mathrm{M}=\mathrm{D}_{\mathrm{K}}\left(\mathrm{C}_{0}\right)$
$n-m$ messages M_{0} such that $\mathrm{M}_{0} \neq \mathrm{D}_{\mathrm{K}}\left(\mathrm{C}_{0}\right)$
We know $1 \leq m \leq l<n$ so $n-m>0$ and there is at least one message M_{0}.
Consider the message M_{0} where $\mathrm{M}_{0} \neq \mathrm{D}_{\mathrm{K}}\left(\mathrm{C}_{0}\right)$ for any K .
So,

$$
p\left(\mathrm{C}_{0} \mid \mathrm{M}_{0}\right)=0
$$

In a perfect cipher,

$$
p\left(\mathrm{C}_{0} \mid \mathrm{M}_{0}\right)=p\left(\mathrm{C}_{0}\right)>0
$$

Hence, by contradiction all perfect ciphers must have $l \geq n$.

