CS588 Notes on Entropy and Perfect Ciphers

Entropy: Amount of information in a message $H(M) = -\Sigma P(M_i) \log P(M_i)$ over all possible messages M_i If there are *n* equally probable messages with a binary alphabet, $H(M) = \log_2 n$ Absolute Rate (R): how much information can be encoded $R = \log_2 Z$ (Z=size of alphabet) Actual Rate (r): how much information can be encoded $\mathbf{r} = \mathbf{H}(M) / N$ number of possible N-letter messages **Redundancy** (D): D = R - rIn English, $D \approx 1 - .28 = .72$ letters/letter **Entropy of cryptosystem:** (K = number of possible keys) $H(K) = \log_{Alphabet} Size K$ if all keys equally likely Unicity distance: U = H(K)/D**Perfect Cipher:** \forall i, j: $P(M_i|C_i) = P(M_i)$

A cipher is perfect iff: $\forall M, C$ P(C | M) = P(C)Or, equivalently: $\forall M, C$ P(M | C) = P(M)

Perfect Cipher Keyspace Theorem: If a cipher is perfect, there must be at least as many keys (l) are there are possible messages (n).

Proof:

Suppose there is a perfect cipher with l < n. (More messages than keys.) Let C₀ be some ciphertext with $p(C_0) > 0$. There exist

m messages M such that $M = D_K(C_0)$

n - *m* messages M₀ such that $M_0 \neq D_K(C_0)$

We know $1 \le m \le l < n$ so n - m > 0 and there is at least one message M₀.

Consider the message M_0 where $M_0 \neq D_K(C_0)$ for any K.

So,

 $p(C_0 | M_0) = 0.$

In a perfect cipher,

 $p(C_0 | M_0) = p(C_0) > 0.$

Hence, by contradiction all perfect ciphers must have $l \ge n$.