
CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

CS - 588
Cryptology

TTIIMMIINNGG AATTTTAACCKK
OONN

EELLLLIIPPTTIICC CCUURRVVEE CCRRYYPPTTOOGGRRAAPPHHYY

ROUP 1

ATTHEW MAH
ICHAEL NEVE

RIC PEETERS
HIJIAN LU PROFESSOR DAVID EVANS

G

M
M
E
Z

University of Virginia Page 1 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Table of Contents

Introduction .. 3

1. Timing Attacks ... 4

Mathematic Model.. 4
Timing Attack on RSA... 4
Extension for Timing Attacks... 6

2. Elliptic Curve Cryptology .. 7

Introduction .. 7
Elliptic curve operations... 7
EC over prime field .. 9
EC over binary fields.. 11

3. El-Gamal scheme with EC ... 12

4. Timing Attack on ECC... 13

5. Conclusion.. 16

6. References .. 17

University of Virginia Page 2 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Introduction

 As subject for this project, we first planned to focus upon smart card timing attacks. Smart cards are
widely used through Western Europe and will probably appear soon in America. They are used in various
application fields and with different levels of complexity and security.

 Timing attacks attempt to exploit the variations in computational time for private key operations to guess
the private key. This type of attack is primitive in the sense that no specialized equipment is needed. An
attacker can break a smart card key by simply measuring the computational time required by the card to
respond to user inputs and recording those user inputs. The viability of this attack is important to any smart
card implementation using vulnerable cryptosystems. An attacker with prolonged passive eavesdropping
ability may be able to break the private key and gain access to the information stored on the card. This will
give the attacker access to sensitive information or money.

 Later – and after readings – we focused deeper: produce a new timing attack. We have glanced through
the Internet to find a cryptosystem not yet analyzed for timing weaknesses. Hence, it appears that the
vulnerability of Elliptic Curve Cryptology to timing attacks has not been widely studied. We have thought
that this subject could be satisfactory and innovative.

 This report is subdivided in three parts: we first start talking about the basics of the timing attacks on a
RSA implementation; we then develop a brief presentation of Elliptic Curves and EC Cryptology. The last
and major part of the report is dedicated to the timing attacks on an open-source implementation of ECC
and our diagnosis about this last point.

University of Virginia Page 3 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

University of Virginia Page 4 of 17

0 �

For k= 0 upto w-1

1. Timing Attacks

Recently, a new class of cryptanalysis aimed at a cryptosytem’s implementation-specific weaknesses has
attracted great interest. This kind of cryptanalysis exploits the leak of information such as timing, power
consumption, and electromagnetic radiation from system operations to facilitate attacks on the
cryptosystem. Since the information used by the attack is not the in the “main channel”, the input or output,
we call these types of attacks “side-channel” attacks. In this paper, we will focus on timing attacks.

Let’s think the cryptosystem as a black box with input and output which constitute the “main channel” of
the system. We can measure the time it takes for the system to give an output after given an input. The time
required for different inputs may vary, forming a timing distribution. If this timing distribution is related to
the secret (key bits) in the system, we may have a way to reveal the secret key.

Mathematic Model
Let us denote a set of inputs (plaintexts) to the system by },...,,{ 21 nM MMMS � . All the possible keys

compose the key set denoted by },...,,{ 21 dK KKKS � , where d is the number of possible keys. If the
cryptosystem implementation we want to attack is vulnerable to timing attacks, the timing distribution of
the input will be dependent on the key used in the system. Thus for key iK , we will have a timing

distribution donated by),()(iMi KSftP � , which is different from that of other keys.

For the system we want to attack, we measure the timing information for a set of input values from the set

MS , and form a timing distribution)(tP . The attack to the system will be reduced to a usual detection

problem which tries to detect iK knowing)(tPi and)(tP . We can apply, at least in theory, regular
detection solutions to solve the problem. For example, the detection problem has a general form of the
solution: if (T)(tP , iK) > Threshold (iK , MS) , iK is detected.
As long as we find the proper transform function T() and the threshold functions, we break the system.

Timing Attack on RSA
The timing attack on RSA was first proposed by Kocher[1]. In Kocher’s paper, a theoretical analysis is
given on the timing attack on an RSA implementation based on the following modular exponentiation
algorithm:

Let 1s

Cryptosystem
(secret key)

Input Output

Time Interval
(measured)

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

 If (bit k of x) is 1 then
 Let nysR kk mod)*(� (1)
 Else
 Let kk sR �

Let nRs kk mod2
1 ��

End For

If we have known exponent bits 0…(b-1), we will know the value of bs . If bit b is 1, operation (1) will be

performed, and for some values of bs , operation (1) will take longer than for other values of bs due to

modular reduction operations. If we find such a timing difference between these two kinds of value bs , we
know bit b is 1. Otherwise bit b is 0. After we repeat the attack for the entire loop, we will know the entire
exponent, which is suppos

Dhen et al[2] gives a ove modular exponentiation
algorithm. For simplicity ind the bit b of the exponent.
We know the value of y, f bs from bits 0 to b-1 of the
exponent and y. Also we and record the corresponding
timings used in the system write the timing for a specific
input M (the value of y)

 ()(1 MTMTT bnM �� ns before the that for bit b,

bT is the time spent for bit b, and 2nT is the time spent after bit b. N is the time for other operations in the

cryptosystem plus noise. We will divide the inputs into 4 sets according to the value of bs :

S10: those inputs whose ysb *(2

S11: those inputs whose ysb *(

S00: those inputs whos 2

S01: those inputs whos b

tice that S10 and S11 form a disj rtition for the entire input set, while S00 and S01 form another

int partition for the entire in ill h erlaps between S10 and S00, S10 and S01,
d S00, S11 and S01. L th in dicator functions for each input set using the

g data we measured:

ed to be the secret.

practical implementation of the timing attack for the ab
, let’s assume we know bit 0…(b-1) and we want to f
 which is open to public, and can calculate the value o
 have a large number of inputs to the cryptosystem
. Since we now target bit b of the exponent, we can

 as:

)() 2 MTn� +N(M) , 1nT is the time spent for iteratio

nmod) is done with

nmod)2 is done witho

nmod is done with a red

nmod is done withou

 a reduction

ut a reduction

uction

t a reduction

e sb)(
e s)(2

No
disjo
S11 an
timin

oint pa
t set. Bu
 define

pu
et’s

t there w
e follow

ave ov
g in

))10(S) N�10(ST)10((TT �
)10(

)10(
)10(

(
)10(

2110
10 Sn

ST
Sn

S
Sn

I bnnS ��
�

�

�� ,

)10(Sn is the number of elements in the input set S10

Similarly

)11(
)11(

)11(
))11()11()11(((

)11(
2111

11 Sn
ST

Sn
SNSTST

Sn
T

I bnnS ���
�

��

��

University of Virginia Page 5 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

(((
)00(

100 ST
Sn
T nS ��

�

)00(
)00(

)00(
))00()00()00 2

00 Sn
ST

Sn
SNST

I bn �
�

��

�

)01(
)01(

)01(
))01()01()01(21

01 Sn
ST

Sn
SNSTS

I bnn �
�

��

Since the left part of the indication function is independent of the va f bit b, the probability theory tells
us that the left part in all the indication functions will be evaluated close to the same constant value
when the number of elements in our ut sets is large enough. So w ill have the following c lusions
on the indication functions when loo back at the modular exponen n algorithm:

If bit b of the exponent is 1, the right part in 10I will be significantly larger than that in 11I , and we will

have 10I > 11I . However, since S00 has overlaps with both S10 and S11, and S01 has overlaps with both

S10 and S11, there will be no significant difference between 00I and 01I . On the contrary, if bit b is 0, we

will have 00I > 01I and 10I is close to 11I .

Consider our mathematic model for the timing attack, we can see that the transform function here is

((
)01(

T
Sn

�
��

01TS�

lue o
very
e w
tiatio

 inp
king

onc

(T)(tP , iK)=

0,
01

00

11

�

�

i

i

Kfor
I
I

I

1,10 Kfor
I

The threshold function is

Threshold (iK , MS)

Extension for Timing Attacks
We have briefly introduced the timing attack on an implementation of RSA. There are several points we
want to make. Timing attacks, just like other “side-channel” attacks, aim at specific implementations of a
cryptosystem, which means the attack may be successful against one implementation of a cipher but not
another implementation of the same cipher. Timing attacks have proved to be very powerful. Researchers
have found timing attacks on both asymmetric ([1],[2]) and symmetric [3][4] cryptosystem. The underlying

ore, our timing attack model
stitute the Hamming-weight
g-weight attacks proposed in

= 1 for
1�iK

0�iK

ideas of these attacks are the same as that we introduced in above. Furtherm
can be extended to other “side channel” attacks. For example, if we sub
information for the timing information in our model, we will have the Hammin
[3].

University of Virginia Page 6 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

2. Elliptic Curve Cryptology

This current section introduces the basic concepts of Elliptic Curves. Our p
main ideas we’ve used in this project to understand the EC, but certainly n
references are available to provide the whole mathematical context used in E
attached importance to the correctness of all the defined operations.

urpose here is to present the
ot to be complete: excellent
CC. Nevertheless, we have

Introduction

Elliptic curves as algebraic/geometric entities have been studied extensively for the past 150 years, and
from these studies has emerged a rich and d eory. Elliptic curve systems as applied cryptography
were ed in 1985 independently by Neal Koblitz from the University of Wash , and Victor
Miller, w o s then at IBM, Yorktown Heig]
Thes rv ve allowed establishment of generatio asym tric cryptographi orithms. The
big w as ared to oth key algorith , is k size. A fairly ty ey size for
RSA his w d take approx m 10^11 MIPs years break. A me bit ECC key
offe l of rity. This ad t only in ith rity level--som that will be
important as computer power continually grows. A 2048-bit RSA key and a 210-bit ECC key are
equivalent.

 les ead than RSA, primarily because it does not have to analyze prime
irly [5]

s , certificates, Diffie-Hellman key agreement, El-Gamal and protocols
 (Ellip nature Algorithm).

ol/element of tomorrow’s cryptology. While ECC has not been as
research has confirmed ECC to be secure.[5]

Elliptic curve operations

The gene efining tic curve is: y2 + a1xy + a3y = x3 + a2x2 + a4x + a6. Some of the ai
parameters may be zero: this could lead to simpler forms of the general equation.
To demonstrate the basic general operations over EC, we will use: y2 = x3 + ax + b (e.g. : a = -7 & b = 6).
The shape of this equation is shown in figure 1. The figure is symmetrical about the x-axis.

eep th

hts.[5
a new
blic-
ately
age

 to
ington

c alg
pical k

re 160-
ething

first
h

e cu
in w

 is
rs th

propos
 wa

es ha
ith EC

bi
e

n of
ms

-
creases w

me
ey
 to

 secu

C,
ts--t

 leve

 comp
oul

 secu

er pu
i

van
1024
e sam

ECC
num
ECC
such

Th
exten

 also
bers, a f
 can
 ECDSA

is coul
sively

 has
a

 be u

d lead
 res

s computational overh
 expensive operation.

ed with SSL scheme
tic Curve Digital Sig

 ECC to be a major to
earched as RSA, to date all

ral equation d a Ellip

University of Virginia Page 7 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

University of Virginia Page 8 of 17

Figure 1 – EC representation

We choose a start point P on the curve.

 Addition
We define here the geometric addition of two points of the EC. We take another point Q on the
curve. We compute R = P + Q. It is a graphical operation consisting of tracing a line through P and
Q. This line defines a unique intersection with the EC: the point –R. R is found by taking the
symmetric point with respect to the x-axis (see figure 2).

Figure 2 – Example of addition

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Formally:
P = (x1,y1)
Q = (x2,y2)

R = P + Q = (x3,y3)

Where,
x3 = �2 – x1 – x2
y3 = � (x1 + x3) – y1
with � = (y2 – y1)/(x

If P = Q, R = P + Q oint P.

 Doubling
The operation need . We draw a tangent line to
the EC at point P. ecting this point across the x-
axis gives R: R = 2P

Formally: the only d
� = (3x1

2 + a)/2y1.

2 – x1).

 is equivalent to adding a point to itself: doubling p

s a single point and consists of finding a point 2P
This line intersects the curve in a point –R. Refl
. See figure 3.

ifference with an addition is the definition of �.

Figure 3 – Example of doubling a point P

s over the real numbers are slow and inaccurate due to round-off error. Cryptograph
 require fast and precise arithmetic; thus elliptic curve groups over the finite fields of Fp

ed in practice.[5]

er prime field

Calculation ic
applications and

mF2 are us

EC ov

Recall that the field Fp uses the numbers from 0 to p - 1, and computations end by taking the remainder on
division by p. For example, in F23 the field is composed of integers from 0 to 22, and any operation within
this field will result in an integer also between 0 and 22.[5] There are then a finite number of points.

University of Virginia Page 9 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Similar operations as addition or doubling are defined over the field. For example, the EC over F23 with a =
7 & b = 6 is shown in figure 4. The addition is computed the same way: two points P and Q are taken, the
result gives the point R. The operations of addition and doubling exhibit the property of closure over the
elliptic curve; the result of these computations yields another integer point on the EC. This is difficult to
prove and we will accept this as a given.

Figure 4 – Example of addition over F23

ure 5 shows a doubling of point P over F23.

The fig

Figure 5 – Example of doubling over F23

University of Virginia Page 10 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

EC over binary fields

Elemen either

polynom strings,
comput ing field

mF2 is

The ellip re x and

y are elem ponding
elliptic cu

Again ifferent

since th . Again,
thes

Here, w scribed in
[6]. Th oints or
an ellip f(x) of
degr cible
polyno example,
given ith that
of B w that the
polynomial f(x) is written with highest powers first, e.g. x4 + x2 + 1. Each polynomial may be written as a
bit string, where each bit is a coefficient of the polynomial. The polynomial x4 + x2 + 1 may be written as
0…010101, where the number of leading zeroes depends upon the field order. If we take two polynomials

�)(xa). The

method e learns

in math to find

�
�

�

1

0

m

j
i ba and

multip + 1) =
x4(x3 + x gs since
each coef

The alg
Input:

ts of the field mF2 are m-bit strings. The rules for arithmetic in mF2 can be defined by

ial representation or by optimal normal basis representation. Since mF2 operates on bit
ers can perform arithmetic in this field very efficiently. An elliptic curve with the underly
 formed by choosing the elements a and b within mF2 (the only condition is that b is not 0).

tic curve includes all points (x,y) which satisfy the elliptic curve equation over mF2 (whe

ents of mF2). An elliptic curve group over mF2 consists of the points on the corres
rve. There are finitely many points on such an elliptic curve.[5]

addition and doubling operations are defined over mF2 . Although these operations are d

e representation of elements are different, the general behavior over mF2 is similar to Fp

e operations exhibit closure and yield only points on the EC.

e will describe one method for multiplying in a binary field, the shift-and-add method de
is multiplication is a necessary component step in computing the sum of two elliptic curve p
tic curve doubling. Each element in the field mF2 may be represented by a polynomial

ee <= m-1, with binary coefficients. Reductions in the field are done modulo a fixed irredu
mial f(x) of degree m. Operations with these polynomials will yield the proper results. For

 elements A, B, and C in mF2 with AB = C, multiplying the polynomial representation of A w
ill yield that of C. This is a property of the Galois field (finite field). We will assume

�
�

�

1

0

m

i

i
i xa and �

�

�

�

1

1

)(
m

j

j
j xbxb we can use the shift-and-add method to find f(x)*g(x

 is essentially an application of the distributive property to multiply two polynomials, as on

 classes. We rewrite � � ��
�

�

�

�

�

�

�

�

�

��

1

0

1

0

1

0

1

0

)(*)(
m

j

m

i

m

j

ji
ji

j
j

i
m

i
i xbaxbxaxbxa . It is easy

� ji
j x because its bit string is simply the bit string of �

�

�

1

0

m

j

j
j xb left shifted by i places

lied by 1 or 0. So for the polynomials (x4 + x2 + 1) and (x3 + x + 1), (x4 + x2 + 1) * (x3 + x
 + 1) + x2(x3 + x + 1) + (x3 + x + 1). The addition step is a simple xor of the two bit strin
ficient has a binary value.

orithm as presented in [6]:
nary polynomials a(x) and b(x) of degree at most m-1

 c(x) = a(x) * b(x) mod f(x), where f(x) is fixed irreducible polynomial of field

1. If a0 = 1 then c = b else c = 0
for i from 1 to m-1 do

a. b = b *x mod f(x) // this step is the left shift
b. If ai == 1 then c = c + b

3. return c

2.

 bi
Output:

University of Virginia Page 11 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

For this particular algorithm for multiplying field elements, the computation time is dependent upon the
number of 1’s in the bit string representation of a(x), which is the Hamming weight of a(x). We also know
that when deg a(x) + deg b(x) > m-1, reductions must occur mod f(x).

3. El-Gamal scheme with EC

The El-Gamal cipher e implemented with any group. We describe th er using an elliptic curve

er a finite field as oup. We assume Bob and agree on a cu Fp and a point P. They
h the curve and th t.

Bob picks a number “y” randomly between 0 and p-1, he computes Y=yP and publishe public key Y.
The security relies e difficulty to find Y knowing P attacker must compute all s Xi+1 = Xi + P
(P � 2P � 3P � yP) until Xi equals Y; while B obtain Y by using efficien orithm (based
of doubling operation) to calculate Y rapidly.

Scheme:
Alice Bob

 Fq,E
 P�E,Y
m: the message
k: a random number between 0 and p-1

a=kP
G=kY
b=m+G
c=(a,b) G’=ya

 m’=b-G’=m

Proof:
m’ = b-G’

ya
ykP

b-kY
+G-

may b
 our gr

e poin

e cip
rve ov

h
er ov

publis
Alice

s his
teps
t alg

 on th
… �

: an
ob can

= b-
= b-
=
= m
= m

 (Y= y
G

P)

University of Virginia Page 12 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

4. Timing Attack on ECC

The timing attack requires us to find a partition of an input message set into groups that require different
amounts of computational time depending on the key bits. For a timing attack to work, there must be some
predictable variation in computational time dependent upon the input messages.

We expected to be able to exploit variations in computing times for multiplications and inverses to guess
the key bits in an implementation the El-Gamal cipher in ECC. These two steps are the most time
consuming steps in the process of adding two elliptic curve points or doubling an elliptic curve point. As
shown above, the shift-and-add method for multiplication certainly has computational time dependent upon
the bit strings multiplied. An implementation of ECC using this algorithm for multiplications should be
vulnerable to timing attacks.

Decryption in El-Gamal involves only two steps: G’=ya and m’=b-G’=m. The step m’=b-G’=m is
relatively simple; it requires one point addition. Finding G’=ya, however, is similar to modular
exponentiation. The term ya is the point a added y times; it requires a series of point doublings and
additions in reasonably fast implementations. The following is a section of code for computing kP, where k
is an integer and P is a point on the EC.

/* now follow balanced representation and compute kP */

 bit_count--;
 copy_point(p,r); /* first bit always set */
 while (bit_count > 0)
 {
 edbl(r, &temp, curv);
 bit_count--;
 switch (blncd[bit_count])
 {
 case 1: esum (p, &temp, r, curv);
 break;
 case -1: esub (&temp, p, r, curv);
 break;
 case 0: copy_point (&temp, r);
 }
 }

The balanced representation of the key reduces the overall number of operations required to compute kP.
For a more detailed explanation of the balanced representation, refer to [9]. Clearly here, when the balanced
representation bit is 1 or –1, the operation will take longer to perform than for a representation bit of 0, but
we must find sets of messages that require different amounts of time to be computed in these cases for an
effective timing attack. The edbl, esum, and esub operations all require field multiplies and inverses, so we
must examine whether these operations require variable time dependent upon the message inputs.

The implementation of ECC written by Rosing that we examined did not use the shift-and-add algorithm
for performing multiplication. The algorithm used is based upon table lookups in a fixed size array. The
same lookups and computations are performed for all inputs. Below is short selection from the function to
multiply two field elements.

void opt_mul(a, b, c)
FIELD2N *a, *b, *c;
{
 INDEX i, j;
 INDEX k, zero_index, one_index;

University of Virginia Page 13 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

University of Virginia Page 14 of 17

 }
}

 ELEMENT bit, temp;
 FIELD2N amatrix[NUMBITS], copyb;

…

/* main loop has two lookups for every position. */

 for (j = 1; j<NUMBITS; j++)
 {
 rot_right(©b);
 zero_index = Lambda[0][j];
 one_index = Lambda[1][j];
 SUMLOOP (i) c->e[i] ^= copyb.e[i] &
 (amatrix[zero_index].e[i] ^
amatrix[one_index].e[i]);
 }
}

This multiplication of binary field elements will not take variable time. So we must find another step in
computing elliptic curve points that results in more variation.

We also found that the computation of inverses was not dependent upon the input. The same table lookups
used in the multiplication algorithm are also used in the inverse algorithm.

void opt_inv(a, result)
FIELD2N *a, *result;
{
 FIELD2N shift, temp;
 INDEX m, s, r, rsft;
 int count = 0;

/* initialize s to lg2_m computed in genlambda. Since msb is always
set,
 initialize result to input a and skip first math loop.
*/

 s = lg2_m - 1;
 copy(a, result);
 m = NUMBITS - 1;

/* create window over m and walk up chain of terms */

 while (s >= 0)
 {
 r = m >> s;
 copy(result, &shift);
 for (rsft = 0; rsft < (r>>1); rsft++) rot_left(&shift);
 opt_mul(result, &shift, &temp);
 if (r&1) /* if window value odd */
 {
 rot_left(&temp); /* do extra square */
 opt_mul(&temp, a, result); /* and multiply */
 }
 else copy(&temp, result);
 s--;

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Additionally, the loop parameters are not dependent upon the input. They are dependent upon the size of
the field mF2 . The operations performed in the loop itself are also independent of the input. We have seen

above that multiplication is independent of input, and the rot_left function is as well. So the inverse
computation is not dependent upon the input.

Neither the field multiplies nor the inverse computations are dependent upon the message inputs. So we
must conclude that the edbl, esum, and esub functions are also not message input dependent and that we
cannot determine key bits from timing measurements of the El-Gamal cipher for this implementation.

Attached is a histogram of timing measurements run on a set of approximately 5000 random messages
(figure 6). The times for each message are for 15 decryptions of each message to enhance differences in
timings. These measurements were taken on a Pentium II 266 mhz processor with 192 MB of RAM. The
measurements show much less variation than the samples shown in [1], where a timing attack was
successful (figures 7 & 8). This information agrees with our findings that the Rosing implementation of
ECC is invulnerable to timing attacks.

Histogram of timing measurements for El-Gamal computation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

3840 3850 3890 3900 3950 3960 4060 4070 4120

Time (ms)

Fr
eq

ue
nc

y

Figure 6 – Histogram of Rosing ECC implementation

University of Virginia Page 15 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Figures 7 & 8 – Histograms of timings [1]

5. Conclusion

With this work, we examined the necessary factors to assess the vulnerability of an ECC system to the
Timing Attack. We have tried to find weaknesses in different computational algorithms used in Rosing's
ECC implementation. We have also attempted to run the El-Gamal implementation with randomly
generated messages to check if different messages needed different time to be decrypted. But, both
analytical approaches provide us with evidence that this implementation is resistant to a Timing Attack.

However, we cannot claim so far that all implementations of ECC are resistant to timing attacks. It seems
that the basic algorithms used to implement ECC system could cause the system to be vulnerable to a
timing attack. The implementation determines whether a cryptosystem is vulnerable to a timing attack.

University of Virginia Page 16 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

6. References

.Kocher,”Timing Attacks on Implementations of
vances in Cryptology-CRYPTO’96 Proceedings, Sp

.-F. Dhem, F.Koeune, P.-A. Leroux, P.Mestre, J.-J
ementation of the timing attack,” Proc. CARDIS’
ications, LNCS. Springer, 1998

[3] J. Kelsey, B. Schneier, D. Wagner and C. Hall, “ Si
ORICS 1998: 97-110

. Koeune and J.-J. Quisquater, “A timing attack ag
 www.certicom.com

] Darrel Hankerson, Julio Lopez Hernandez and Al
rve Cryptography Over Binary Fields”, Cryptograph

[7] Don Johnson and Alfred Menezes, “The Elliptic Cu

[1] P
Ad
[2] J
impl
Appl

ES
[4] F 1
[5]
[6 tic
Cu

[8] www.vlsi.informatik.tu-darmstadt.de
[9] Implementing Elliptic Curve Cryptography, Michael Rosing,1998 (http://www.manning.com/Rosing/)

 Diffe-Hellman, RSA, DSS, and Other Systems,”
ringer-Verlag, 1996, pp. 104-113
. Quisquater and J.-L. Willems, “A practical

1998, Smart Card Research and Advanced

de Channel Cryptanalysis of Product Ciphers”

ainst Rijndael” UCL Technical Report CG-1999/

fred Menezes, “Software Implementation of Ellip
ic Hardware and Embedded Systems, 2000.
rve Digital Signature Algorithm (ECDSA)”, 1999.

University of Virginia Page 17 of 17

	CS - 588
	Cryptology
	
	Timing AttacK

	on
	Elliptic Curve Cryptography

	Table of Contents
	Introduction
	1.Timing Attacks
	Mathematic Model
	Timing Attack on RSA
	Extension for Timing Attacks

	2.Elliptic Curve Cryptology
	Introduction
	Elliptic curve operations
	Addition
	Doubling

	EC over prime field
	EC over binary fields

	3.El-Gamal scheme with EC
	
	Scheme:
	Proof:

	4.Timing Attack on ECC
	5.Conclusion
	6.References

