CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

.................

GRroupr 1
B
MATTHEW MAH . .‘
MICHAEL NEVE I
ERIC PEETERS
ZHIJIIAN LU ' . - PROFESSOR DAVID EVANS

University of Virginia Page 1 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Table of Contents
B3T3 ¢ o7 L1 o15 o) USSP 3
Lo THMINE ATEACKS ..ottt ettt ettt et at e et e e sb e bt et e eetesseesaeesaeenaeenbeenneens 4
Mathematic MOAEL.........oouiiieiieieteee ettt ettt e st e st e e beenseeseesneesseeseenseenseensensnessaensean 4
Timing Attack 0N RSAottt ettt ettt et et e e abeesae st eesse e seensesnnesseesseenseenseans 4
Extension for Timing AttACKS........ccveieiiieiieiiert ettt ettt e st s e st e aeenae e sseesseesseensesssensaeseas 6
2. EIPtic CUIVE CryPLOLOZY ...cecuieiieiieiieitieit ettt ettt ettt et s e st esbee bt et eaeesaeenbeeneeenneens 7
INELOAUCTION 1.ttt ettt e s e et e e s aa e ettt e sbe e sbeeasse e sseessaessseensseenssaenseeensseessessseensnennes 7
EIIPLiC CUIVE OPETALIONS ...evveeeerieeiiieritiesteeetiesteestteesteessteessseessseessseensseessseesseasssesseeenssesnseessesesseessesssseens 7
EC OVl PrImE fI81A ...eovviiiiieeiie ettt ettt e et e et e e s taeenteeessaeenseesnseeenseesnseensseens 9
EC OVer DINATY FIEIAS ..cuviiiiiieiie ettt e ee et e et e et e et eeteeeseesntaeesseeenseesnsaeensaesnseennses 11
3. El-Gamal scheme With ECccccoiiiiiiiiie ettt et e e enees 12
4. Timing Attack 0N ECCccoioiiiieiieeeeee ettt ettt ettt e s essaesseeseenseenneennennns 13
T 1017 L1 15 1o s WU PRUPRRP 16
I S (o) (<3 s o7 SRR 17

University of Virginia Page 2 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Introduction

As subject for this project, we first planned to focus upon smart card timing attacks. Smart cards are
widely used through Western Europe and will probably appear soon in America. They are used in various
application fields and with different levels of complexity and security.

Timing attacks attempt to exploit the variations in computational time for private key operations to guess
the private key. This type of attack is primitive in the sense that no specialized equipment is needed. An
attacker can break a smart card key by simply measuring the computational time required by the card to
respond to user inputs and recording those user inputs. The viability of this attack is important to any smart
card implementation using vulnerable cryptosystems. An attacker with prolonged passive eavesdropping
ability may be able to break the private key and gain access to the information stored on the card. This will
give the attacker access to sensitive information or money.

Later — and after readings — we focused deeper: produce a new timing attack. We have glanced through
the Internet to find a cryptosystem not yet analyzed for timing weaknesses. Hence, it appears that the
vulnerability of Elliptic Curve Cryptology to timing attacks has not been widely studied. We have thought
that this subject could be satisfactory and innovative.

This report is subdivided in three parts: we first start talking about the basics of the timing attacks on a
RSA implementation; we then develop a brief presentation of Elliptic Curves and EC Cryptology. The last
and major part of the report is dedicated to the timing attacks on an open-source implementation of ECC
and our diagnosis about this last point.

University of Virginia Page 3 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

1. Timing Attacks

Recently, a new class of cryptanalysis aimed at a cryptosytem’s implementation-specific weaknesses has
attracted great interest. This kind of cryptanalysis exploits the leak of information such as timing, power
consumption, and electromagnetic radiation from system operations to facilitate attacks on the
cryptosystem. Since the information used by the attack is not the in the “main channel”, the input or output,
we call these types of attacks “side-channel” attacks. In this paper, we will focus on timing attacks.

Let’s think the cryptosystem as a black box with input and output which constitute the “main channel” of
the system. We can measure the time it takes for the system to give an output after given an input. The time
required for different inputs may vary, forming a timing distribution. If this timing distribution is related to
the secret (key bits) in the system, we may have a way to reveal the secret key.

Cryptosystem
> (secret key) >

Input Output

Time Interval
(measured)

Mathematic Model
Let us denote a set of inputs (plaintexts) to the system by S,, = {M,,M,,...,M }. All the possible keys

compose the key set denoted by S, ={K,,K,,...,K,}, where d is the number of possible keys. If the
cryptosystem implementation we want to attack is vulnerable to timing attacks, the timing distribution of
the input will be dependent on the key used in the system. Thus for key K, we will have a timing

distribution donated by P.(¢) = f(S,,,K,), which is different from that of other keys.

For the system we want to attack, we measure the timing information for a set of input values from the set
S, , and form a timing distribution P(#). The attack to the system will be reduced to a usual detection
problem which tries to detect K, knowing P.(f)and P(f). We can apply, at least in theory, regular
detection solutions to solve the problem. For example, the detection problem has a general form of the
solution: if 7'(P(t),K,) > Threshold(K,,S,,) , K, is detected.

As long as we find the proper transform function T() and the threshold functions, we break the system.

Timing Attack on RSA

The timing attack on RSA was first proposed by Kocher[1]. In Kocher’s paper, a theoretical analysis is
given on the timing attack on an RSA implementation based on the following modular exponentiation
algorithm:

Let s, =1
For k= 0 upto w-1

University of Virginia Page 4 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

If (bit k of x) is 1 then

Let R, = (s, * y)modn (1)
Else

Let R, =,

Let 5,,, =R + modn
End For

If we have known exponent bits 0...(b-1), we will know the value of 5, . If bit b is 1, operation (1) will be
performed, and for some values of s, , operation (1) will take longer than for other values of s, due to

modular reduction operations. If we find such a timing difference between these two kinds of value s, , we

know bit b is 1. Otherwise bit b is 0. After we repeat the attack for the entire loop, we will know the entire
exponent, which is supposed to be the secret.

Dhen et al[2] gives a practical implementation of the timing attack for the above modular exponentiation
algorithm. For simplicity, let’s assume we know bit 0...(b-1) and we want to find the bit b of the exponent.

We know the value of y, which is open to public, and can calculate the value of §, from bits 0 to b-1 of the

exponent and y. Also we have a large number of inputs to the cryptosystem and record the corresponding
timings used in the system. Since we now target bit b of the exponent, we can write the timing for a specific
input M (the value of'y) as:

T, =T,(M)+T,(M)+T,(M)+NM), T, is the time spent for iterations before the that for bit b,
T, is the time spent for bit b, and 7', is the time spent after bit b. N is the time for other operations in the

cryptosystem plus noise. We will divide the inputs into 4 sets according to the value of 5, :

S10: those inputs whose (s, * ¥)* mod 7 is done with a reduction

S11: those inputs whose (s, * y)2 mod 7 is done without a reduction

S00: those inputs whose (s,)* mod 7 is done with a reduction

SO1: those inputs whose (s,)2 mod 7 is done without a reduction

Notice that S10 and S11 form a disjoint partition for the entire input set, while SO0 and SO1 form another
disjoint partition for the entire input set. But there will have overlaps between S10 and S00, S10 and SO1,

S11 and S00, S11 and SO1. Let’s define the following indicator functions for each input set using the
timing data we measured:

;2T _ 2 (T,(S10)+T,,(S10)+ N(S10) D 7,(510)
Y n(S10) n(S10) n(510)
n(S10) is the number of elements in the input set S10

Similarly
DTy (T, (SI)+T,,(SID)+ N(S11)) Y T,(S11)
sty n(S11) " n(S11)

University of Virginia Page 5 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

;2w _ 2(T,(S00)+T,,(S00) + N(S00) 3T, (500)
7 n(S00) n(S00) i n(S00)

;2T _ DT (SOD+T,, (SO + N(SOD) 377, (S01)
" aso1) n(S01) i n(S01)

Since the left part of the indication function is independent of the value of bit b, the probability theory tells
us that the left part in all the indication functions will be evaluated very close to the same constant value
when the number of elements in our input sets is large enough. So we will have the following conclusions
on the indication functions when looking back at the modular exponentiation algorithm:

If bit b of the exponent is 1, the right part in /,, will be significantly larger than that in /,,, and we will
have [,, > I,,. However, since SO0 has overlaps with both S10 and S11, and SO1 has overlaps with both
S10 and S11, there will be no significant difference between [, and /. On the contrary, if bit b is 0, we

will have [, > [, and I, is close to /.

Consider our mathematic model for the timing attack, we can see that the transform function here is

I
—, for K, =1
7 j

T(P(t).K,)- 1“
Iﬂ,for K, =0

01

The threshold function is

i

K
Threshold (K, S,,) =1 for K

Extension for Timing Attacks

We have briefly introduced the timing attack on an implementation of RSA. There are several points we
want to make. Timing attacks, just like other “side-channel” attacks, aim at specific implementations of a
cryptosystem, which means the attack may be successful against one implementation of a cipher but not
another implementation of the same cipher. Timing attacks have proved to be very powerful. Researchers
have found timing attacks on both asymmetric ([1],[2]) and symmetric [3][4] cryptosystem. The underlying
ideas of these attacks are the same as that we introduced in above. Furthermore, our timing attack model
can be extended to other “side channel” attacks. For example, if we substitute the Hamming-weight
information for the timing information in our model, we will have the Hamming-weight attacks proposed in

[3].

University of Virginia Page 6 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

2. Elliptic Curve Cryptology

This current section introduces the basic concepts of Elliptic Curves. Our purpose here is to present the
main ideas we’ve used in this project to understand the EC, but certainly not to be complete: excellent
references are available to provide the whole mathematical context used in ECC. Nevertheless, we have
attached importance to the correctness of all the defined operations.

Introduction

Elliptic curves as algebraic/geometric entities have been studied extensively for the past 150 years, and
from these studies has emerged a rich and deep theory. Elliptic curve systems as applied to cryptography
were first proposed in 1985 independently by Neal Koblitz from the University of Washington, and Victor
Miller, who was then at IBM, Yorktown Heights.[5]

These curves have allowed establishment of a new generation of asymmetric cryptographic algorithms. The
big win with ECC, as compared to other public-key algorithms, is key size. A fairly typical key size for
RSA is 1024 bits--this would take approximately 10"11 MIPs-years to break. A mere 160-bit ECC key
offers the same level of security. This advantage only increases with security level--something that will be
important as computer power continually grows. A 2048-bit RSA key and a 210-bit ECC key are
equivalent.

ECC also has less computational overhead than RSA, primarily because it does not have to analyze prime
numbers, a fairly expensive operation.[5]

ECC can be used with SSL scheme, certificates, Diffie-Hellman key agreement, El-Gamal and protocols
such ECDSA (Elliptic Curve Digital Signature Algorithm).

This could lead ECC to be a major tool/element of tomorrow’s cryptology. While ECC has not been as
extensively researched as RSA, to date all research has confirmed ECC to be secure.[5]

Elliptic curve operations

The general equation defining a Elliptic curve is: y* + a,xy + asy = X° + a,x* + a;x + a5. Some of the a
parameters may be zero: this could lead to simpler forms of the general equation.

To demonstrate the basic general operations over EC, we will use: y* =x” +ax +b (e.g.: a=-7 & b=6).
The shape of this equation is shown in figure 1. The figure is symmetrical about the x-axis.

University of Virginia Page 7 of 17

CS588

Timing attack on Elliptic Curve Cryptography

Fall 2001

[
-

S ’?‘-
+ /
£ /
{/
T !
+ |
+ /
+ /
- !
!
By {
__\'I i|I
Y e X
[B
AR
i 1
A
iR \.
4
—_ ‘\l
+ 3
A L
\
+ Y
+ II.
€L .
L
T 4
L

Figure 1 — EC representation

We choose a start point P on the curve.

Addition

We define here the geometric addition of two points of the EC. We take another point Q on the
curve. We compute R =P + Q. It is a graphical operation consisting of tracing a line through P and
Q. This line defines a unique intersection with the EC: the point —R. R is found by taking the
symmetric point with respect to the x-axis (see figure 2).

e

Elliptic curve equation: 2 =x3- Tx +6
F 0.539, 1.55)
£ (-2.62, -2.54)
=R (3.75,5.9)
R(3.75-57
P+OQ=R=03.75-57.

Figure 2 — Example of addition

University of Virginia

Page 8 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Formally:
P=(x1.y1)
Q= (x2.y2)

R=P+Q=(xys)
Where,

X3= 62 — X1 — X3
y3=0(xi+x3) -y

with 0 = (y, — y1)/(x2 — X).

IfP=Q, R=P+Q is equivalent to adding a point to itself: doubling point P.

Doubling

The operation needs a single point and consists of finding a point 2P. We draw a tangent line to
the EC at point P. This line intersects the curve in a point —R. Reflecting this point across the x-
axis gives R: R =2P. See figure 3.

Formally: the only difference with an addition is the definition of 6.
0= (3x," +a)2y,.

"
(3=]

Elliptic curve equation: y
fﬁ F(-1.0,347
=R {2.34, 1.54)
Ri2.34,-1.54)

/

L L L

2P =R=(2.34,-1.54).
The tangent line through P gives R.

Figure 3 — Example of doubling a point P

Calculations over the real numbers are slow and inaccurate due to round-off error. Cryptographic
applications require fast and precise arithmetic; thus elliptic curve groups over the finite fields of F, and

F ,n are used in practice.[5]

EC over prime field

Recall that the field Fp uses the numbers from 0 to p - 1, and computations end by taking the remainder on
division by p. For example, in F,; the field is composed of integers from 0 to 22, and any operation within
this field will result in an integer also between 0 and 22.[5] There are then a finite number of points.

University of Virginia Page 9 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Similar operations as addition or doubling are defined over the field. For example, the EC over F,; with a =
7 & b = 6 is shown in figure 4. The addition is computed the same way: two points P and Q are taken, the
result gives the point R. The operations of addition and doubling exhibit the property of closure over the
elliptic curve; the result of these computations yields another integer point on the EC. This is difficult to
prove and we will accept this as a given.

y o oss Ee

22 £15, 14)

2l (10, 8)

A e,

19 R (19,11

12

i7

i6

15

14

i3

12

11 52

10 J.D =3

[} -

. x_ =E-x_-x_modg

= =i Fas £ =

7 =9-3-10 mod 23

] — 10

5 1F

4 ==y _ +{*{x_-x_Imodg

2 'R Rf =

- =-10+3 *{3- 19 mod 23

2 \ F

1 =13+3 * 7Tmod 23

U 12343568789 10111213141516171819202122 x = 13+21 mod 23
y=x¥+Tx+6 nvean =11

20 solutions
P+ =R=1(19,11).

Figure 4 — Example of addition over F;

The figure 5 shows a doubling of point P over Fy;.

. P(3,10)
21 R(10,8)

19

}'8; I=(3:cpz+a,) *(ZyP)'l mod g

i = 34 * 201 mod 23

}i =11 * 15 mod 23

13 =4

if xR=£2—2meudp

10 P =16 - 6 mod 23

: R =10

; yR=-yP+£*(xP-xR)mudp
‘ = .10+4 * (3-10) mod 23
4 = 13+4 * 16 mod 23

= 13 +18 mod 23

1 =38

=

1 23435687809 101112131415161718192021 22 =
y:=x¥+ 7x +6 over F23 2P =R=1(10,8).
20 solutions

Figure 5 — Example of doubling over F»3

University of Virginia Page 10 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

EC over binary fields

Elements of the field Fzm are m-bit strings. The rules for arithmetic in Fz'" can be defined by either

polynomial representation or by optimal normal basis representation. Since I, operates on bit strings,

computers can perform arithmetic in this field very efficiently. An elliptic curve with the underlying field

F om is formed by choosing the elements a and b within F om (the only condition is that b is not 0).

The elliptic curve includes all points (x,y) which satisfy the elliptic curve equation over F. om (where x and

y are elements of Fzm). An elliptic curve group over [, consists of the points on the corresponding

elliptic curve. There are finitely many points on such an elliptic curve.[5]

Again addition and doubling operations are defined over Fz"’ . Although these operations are different

since the representation of elements are different, the general behavior over Fz'" is similar to F,. Again,

these operations exhibit closure and yield only points on the EC.

Here, we will describe one method for multiplying in a binary field, the shift-and-add method described in
[6]. This multiplication is a necessary component step in computing the sum of two elliptic curve points or

an elliptic curve doubling. Each element in the field F ,n may be represented by a polynomial f(x) of

degree <= m-1, with binary coefficients. Reductions in the field are done modulo a fixed irreducible
polynomial f(x) of degree m. Operations with these polynomials will yield the proper results. For example,

given elements A, B, and C in F’ om with AB = C, multiplying the polynomial representation of A with that

of B will yield that of C. This is a property of the Galois field (finite field). We will assume that the
polynomial f(x) is written with highest powers first, e.g. x* + x* + 1. Each polynomial may be written as a
bit string, where each bit is a coefficient of the polynomial. The polynomial x* + x* + 1 may be written as
0...010101, where the number of leading zeroes depends upon the field order. If we take two polynomials
m—1 m—1
a(x) = Zaix’ and b(x) = Zb ;X’ we can use the shift-and-add method to find f(x)*g(x). The
i=0 Jj=1
method is essentially an application of the distributive property to multiply two polynomials, as one learns
m—1 m—1 m—1 m—1
in math classes. We rewrite a(x)*b(x)= Zaix’ ijx’ = ZaiijXZ” . It is easy to find
i=0 j=0 =0 j=0
m—1 o m-1 .
aiijxl” because its bit string is simply the bit string of ijxj left shifted by i places and
j=0 j=0
multiplied by 1 or 0. So for the polynomials (x* + x* + 1) and (x’ + x + 1), (x* + x> + 1) * (X’ +x+ 1) =
X'+ x+ 1)+ x*(x + x + 1) + (X + x + 1). The addition step is a simple xor of the two bit strings since
each coefficient has a binary value.

The algorithm as presented in [6]:
Input: binary polynomials a(x) and b(x) of degree at most m-1
Output: c(x) = a(x) * b(x) mod f(x), where f(x) is fixed irreducible polynomial of field

1. Ifag=1thenc=belsec=0
2. forifrom 1 to m-1do

a. b=Db *xmod f(x) // this step is the left shift
b. Ifaj==1thenc=c+b
3. returnc

University of Virginia Page 11 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

For this particular algorithm for multiplying field elements, the computation time is dependent upon the
number of 1’s in the bit string representation of a(x), which is the Hamming weight of a(x). We also know
that when deg a(x) + deg b(x) > m-1, reductions must occur mod f(x).

3. El-Gamal scheme with EC

The El-Gamal cipher may be implemented with any group. We describe the cipher using an elliptic curve
over a finite field as our group. We assume Bob and Alice agree on a curve over F, and a point P. They
publish the curve and the point.

Bob picks a number “y” randomly between 0 and p-1, he computes Y=yP and publishes his public key Y.
The security relies on the difficulty to find Y knowing P: an attacker must compute all steps X;;; = X; + P
(P — 2P — 3P —... — yP) until X equals Y; while Bob can obtain Y by using efficient algorithm (based
of doubling operation) to calculate Y rapidly.

Scheme:
Alice Bob
Fo.E
PeE)Y
m: the message
k: a random number between 0 and p-1
a=kP
G=kY
b=m+G
c=(a,b) | G’=ya
m’=b-G’=m
Proof:
m’ = b-G’
= b-ya
= b-ykP
= b-kY (Y=yP)
= m+G-G
= m

University of Virginia Page 12 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

4. Timing Attack on ECC

The timing attack requires us to find a partition of an input message set into groups that require different
amounts of computational time depending on the key bits. For a timing attack to work, there must be some
predictable variation in computational time dependent upon the input messages.

We expected to be able to exploit variations in computing times for multiplications and inverses to guess
the key bits in an implementation the El-Gamal cipher in ECC. These two steps are the most time
consuming steps in the process of adding two elliptic curve points or doubling an elliptic curve point. As
shown above, the shift-and-add method for multiplication certainly has computational time dependent upon
the bit strings multiplied. An implementation of ECC using this algorithm for multiplications should be
vulnerable to timing attacks.

Decryption in El-Gamal involves only two steps: G’=ya and m’=b-G’=m. The step m’=b-G’=m is
relatively simple; it requires one point addition. Finding G’=ya, however, is similar to modular
exponentiation. The term ya is the point a added y times; it requires a series of point doublings and
additions in reasonably fast implementations. The following is a section of code for computing kP, where k
is an integer and P is a point on the EC.

/* now follow balanced representation and compute kP */

bit count--;
copy_point (p, r); /* first bit always set */
while (bit count > 0)
{
edbl (r, &temp, curv);
bit count--;
switch (blncd[bit count])
{
case 1l: esum (p, &temp, r, curv);
break;
case -1: esub (&temp, p, r, curv);
break;
case 0: copy point (&temp, r);
}
}

The balanced representation of the key reduces the overall number of operations required to compute kP.
For a more detailed explanation of the balanced representation, refer to [9]. Clearly here, when the balanced
representation bit is 1 or —1, the operation will take longer to perform than for a representation bit of 0, but
we must find sets of messages that require different amounts of time to be computed in these cases for an
effective timing attack. The edbl, esum, and esub operations all require field multiplies and inverses, so we
must examine whether these operations require variable time dependent upon the message inputs.

The implementation of ECC written by Rosing that we examined did not use the shift-and-add algorithm
for performing multiplication. The algorithm used is based upon table lookups in a fixed size array. The
same lookups and computations are performed for all inputs. Below is short selection from the function to
multiply two field elements.

void opt mul(a, b, c)
FIELD2N *a, *b, *c;
{
INDEX 1, j;
INDEX k, zero index, one_ index;

University of Virginia Page 13 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

ELEMENT bit, temp;
FIELD2N amatrix [NUMBITS], copyb;

/* main loop has two lookups for every position. */

for (j = 1; j<NUMBITS; Jj++)
{
rot right (©b);
zero_index = Lambdal[O0] [
one index = Lambdal[l][j];
SUMLOOP (i) c->e[i] "= copyb.e[i] &
(amatrix[zero index].e[1i]

jlz

A

amatrix[one index].e[i]);
}
}

This multiplication of binary field elements will not take variable time. So we must find another step in
computing elliptic curve points that results in more variation.

We also found that the computation of inverses was not dependent upon the input. The same table lookups
used in the multiplication algorithm are also used in the inverse algorithm.

void opt inv(a, result)
FIELD2N *a, *result;
{

FIELD2N shift, temp;

INDEX m, s, r, rsft;

int count = 0;
/* initialize s to 1g2 m computed in genlambda. Since msb is always
set,

initialize result to input a and skip first math loop.
*/

s =1g2m - 1;
copy(a, result);
m = NUMBITS - 1;

/* create window over m and walk up chain of terms */

while (s >= 0)
{
r =m > s;
copy (result, &shift);
for (rsft = 0; rsft < (r>>1); rsft++) rot left(&shift);
opt mul (result, &shift, &temp);
if (r&l) /* if window value odd */
{
rot left(&temp); /* do extra square */
opt mul(&temp, a, result); /* and multiply */
}
else copy(&temp, result);
S—==7

University of Virginia Page 14 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

Additionally, the loop parameters are not dependent upon the input. They are dependent upon the size of
the field F o - The operations performed in the loop itself are also independent of the input. We have seen

above that multiplication is independent of input, and the rot left function is as well. So the inverse
computation is not dependent upon the input.

Neither the field multiplies nor the inverse computations are dependent upon the message inputs. So we
must conclude that the edb1, esum, and esub functions are also not message input dependent and that we
cannot determine key bits from timing measurements of the El-Gamal cipher for this implementation.

Attached is a histogram of timing measurements run on a set of approximately 5000 random messages
(figure 6). The times for each message are for 15 decryptions of each message to enhance differences in
timings. These measurements were taken on a Pentium II 266 mhz processor with 192 MB of RAM. The
measurements show much less variation than the samples shown in [1], where a timing attack was
successful (figures 7 & 8). This information agrees with our findings that the Rosing implementation of
ECC is invulnerable to timing attacks.

Histogram of timing measurements for EI-Gamal computation

4500

4000

3500 -

Frequency
N N
o [6)]
o o
o o

1500

1000

500 -

0 — 1 ™

3840 3850 3890 3900 3950 3960 4060 4070 4120

Time (ms)

Figure 6 — Histogram of Rosing ECC implementation

University of Virginia Page 15 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

RSAREF Modular Multiplication Times
RSAREF Modular Ezponentiation Times

= =
] []
= =
e e
2 2
ra e
22823822332 388¢88¢8
;
MDODANORND0 000606 60o PR EOLRREOLRERREOLR
ol e R R Rl R i - Ty Ty el B EhE4gd85 ST
F- P 00 00 00 02 02 00 00 00 00 00 00 00 00 00 00 U'JUTILDEDLDLDEEEELDLDLD
T T T o TT T T T T T T T
T I T I Y I I I Y Y S I Y N X - 4
) a Time (10" sec)
Time (10™ sec)

Figures 7 & 8 — Histograms of timings [1]

5. Conclusion

With this work, we examined the necessary factors to assess the vulnerability of an ECC system to the
Timing Attack. We have tried to find weaknesses in different computational algorithms used in Rosing's
ECC implementation. We have also attempted to run the El-Gamal implementation with randomly
generated messages to check if different messages needed different time to be decrypted. But, both
analytical approaches provide us with evidence that this implementation is resistant to a Timing Attack.

However, we cannot claim so far that all implementations of ECC are resistant to timing attacks. It seems
that the basic algorithms used to implement ECC system could cause the system to be vulnerable to a
timing attack. The implementation determines whether a cryptosystem is vulnerable to a timing attack.

University of Virginia Page 16 of 17

CS588 Timing attack on Elliptic Curve Cryptography Fall 2001

6. References

[1] P.Kocher,”Timing Attacks on Implementations of Diffe-Hellman, RSA, DSS, and Other Systems,”
Advances in Cryptology-CRYPTO’96 Proceedings, Springer-Verlag, 1996, pp. 104-113

[2] J.-F. Dhem, F.Koeune, P.-A. Leroux, P.Mestre, J.-J. Quisquater and J.-L. Willems, “A practical
implementation of the timing attack,” Proc. CARDIS 1998, Smart Card Research and Advanced
Applications, LNCS. Springer, 1998

[3]J. Kelsey, B. Schneier, D. Wagner and C. Hall, “ Side Channel Cryptanalysis of Product Ciphers”
ESORICS 1998: 97-110

[4] F. Koeune and J.-J. Quisquater, “A timing attack against Rijndael” UCL Technical Report CG-1999/1
[5] www.certicom.com

[6] Darrel Hankerson, Julio Lopez Hernandez and Alfred Menezes, “Software Implementation of Elliptic
Curve Cryptography Over Binary Fields”, Cryptographic Hardware and Embedded Systems, 2000.

[7] Don Johnson and Alfred Menezes, “The Elliptic Curve Digital Signature Algorithm (ECDSA)”, 1999.
[8] www.vlsi.informatik.tu-darmstadt.de

[9] Implementing Elliptic Curve Cryptography, Michael Rosing,1998 (http://www.manning.com/Rosing/)

University of Virginia Page 17 of 17

	CS - 588
	Cryptology
	
	Timing AttacK

	on
	Elliptic Curve Cryptography

	Table of Contents
	Introduction
	1.Timing Attacks
	Mathematic Model
	Timing Attack on RSA
	Extension for Timing Attacks

	2.Elliptic Curve Cryptology
	Introduction
	Elliptic curve operations
	Addition
	Doubling

	EC over prime field
	EC over binary fields

	3.El-Gamal scheme with EC
	
	Scheme:
	Proof:

	4.Timing Attack on ECC
	5.Conclusion
	6.References

