
3
Programming

The Analytical Engine has no pretensions whatever to originate any thing. It can
do whatever we know how to order it to perform. It can follow analysis; but it
has no power of anticipating any analytical relations or truths. Its province is to
assist us in making available what we are already acquainted with.

Augusta Ada, Countess of Lovelace, in Notes on the Analytical Engine, 1843

What distinguishes a computer from other machines is its programmability. With-
out a program, a computer is an overpriced door stopper. With the right pro-
gram, though, a computer can be a tool for communicating across the conti-
nent, discovering a new molecule that can cure cancer, composing a symphony,
or managing the logistics of a retail empire.

Programming is the act of writing instructions that make the computer do some-
thing useful. It is an intensely creative activity, involving aspects of art, engi-
neering, and science. Good programs are written to be executed efficiently by
computers, but also to be read and understood by humans. The best programs
are delightful in ways similar to the best architecture, elegant in both form and
function.

Golden Gate Bridge
The ideal programmer would have the vision of Isaac Newton, the intellect of
Albert Einstein, the creativity of Miles Davis, the aesthetic sense of Maya Lin,
the wisdom of Benjamin Franklin, the literary talent of William Shakespeare, the
oratorical skills of Martin Luther King, the audacity of John Roebling, and the
self-confidence of Grace Hopper.

Fortunately, it is not necessary to possess all of those rare qualities to be a good
programmer! Indeed, anyone who is able to master the intellectual challenge
of learning a language (which, presumably, anyone who has gotten this far has
done at least for English) can become a good programmer. Since programming
is a new way of thinking, many people find it challenging and even frustrating
at first. Because the computer does exactly what it is told, a small mistake in a
program may prevent it from working as intended. With a bit of patience and
persistence, however, the tedious parts of programming become easier, and you
will be able to focus your energies on the fun and creative problem solving parts.

In the previous chapter, we explored the components of language and mecha-
nisms for defining languages. In this chapter, we explain why natural languages
are not a satisfactory way for defining procedures and introduce a language for
programming computers and how it can be used to define procedures.

36 3.1. Problems with Natural Languages

3.1 Problems with Natural Languages
Natural languages, such as English, work adequately (most, but certainly not
all, of the time) for human-human communication, but are not well-suited for
human-computer or computer-computer communication. Why can’t we use
natural languages to program computers?

Next, we survey several of the reasons for this. We use specifics from English,
although all natural languages suffer from these problems to varying degrees.

Complexity. Although English may seem simple to you now, it took many years
of intense effort (most of it subconscious) for you to learn it. Despite using it for
most of their waking hours for many years, native English speakers know a small
fraction of the entire language. The Oxford English Dictionary contains 615,000
words, of which a typical native English speaker knows about 40,000.

Ambiguity. Not only do natural languages have huge numbers of words, most
words have many different meanings. Understanding the intended meaning of
an utterance requires knowing the context, and sometimes pure guesswork.

For example, what does it mean to be paid biweekly? According to the American
Heritage Dictionary1, biweekly has two definitions:

1. Happening every two weeks.

2. Happening twice a week; semiweekly.

Merriam-Webster’s Dictionary2 takes the opposite approach:

1. occurring twice a week

2. occurring every two weeks : fortnightly

So, depending on which definition is intended, someone who is paid biweekly
could either be paid once or four times every two weeks! The behavior of a pay-
roll management program better not depend on how biweekly is interpreted.

Even if we can agree on the definition of every word, the meaning of a sentence
is often ambiguous. This particularly difficult example is taken from the instruc-
tions with a shipment of ballistic missiles from the British Admiralty:3

It is necessary for technical reasons that these warheads be stored upside
down, that is, with the top at the bottom and the bottom at the top. In
order that there be no doubt as to which is the bottom and which is the
top, for storage purposes, it will be seen that the bottom of each warhead
has been labeled ’TOP’.

Irregularity. Because natural languages evolve over time as different cultures
interact and speakers misspeak and listeners mishear, natural languages end up
a morass of irregularity. Nearly all grammar rules have exceptions. For example,
English has a rule that we can make a word plural by appending an s. The new

1American Heritage, Dictionary of the English Language (Fourth Edition), Houghton Mifflin Com-
pany, 2007 (http://www.answers.com/biweekly).

2Merriam-Webster Online, Merriam-Webster, 2008 (http://www.merriam-webster.com/dictionary/
biweekly).

3Carl C. Gaither and Alma E. Cavazos-Gaither, Practically Speaking: A Dictionary of Quotations
on Engineering, Technology and Architecture, Taylor & Francis, 1998.

Chapter 3. Programming 37

word means “more than one of the original word’s meaning”. This rule works for
most words: word 7→ words, language 7→ languages, person 7→ persons.4

It does not work for all words, however. The plural of goose is geese (and gooses
is not an English word), the plural of deer is deer (and deers is not an English
word), and the plural of beer is controversial (and may depend on whether you
speak American English or Canadian English).

These irregularities can be charming for a natural language, but they are a con-
stant source of difficulty for non-native speakers attempting to learn a language.
There is no sure way to predict when the rule can be applied, and it is necessary
to memorize each of the irregular forms.

Uneconomic. It requires a lot of space to express a complex idea in a natural lan- I have made this
letter longer than
usual, only because
I have not had the
time to make it
shorter.
Blaise Pascal, 1657

guage. Many superfluous words are needed for grammatical correctness, even
though they do not contribute to the desired meaning. Since natural languages
evolved for everyday communication, they are not well suited to describing the
precise steps and decisions needed in a computer program.

As an example, consider a procedure for finding the maximum of two numbers.
In English, we could describe it like this:

To find the maximum of two numbers, compare them. If the first num-
ber is greater than the second number, the maximum is the first number.
Otherwise, the maximum is the second number.

Perhaps shorter descriptions are possible, but any much shorter description
probably assumes the reader already knows a lot. By contrast, we can express
the same steps in the Scheme programming language in very concise way (don’t
worry if this doesn’t make sense yet—it should by the end of this chapter):

(define (bigger a b) (if (> a b) a b))

Limited means of abstraction. Natural languages provide small, fixed sets of
pronouns to use as means of abstraction, and the rules for binding pronouns to
meanings are often unclear. Since programming often involves using simple
names to refer to complex things, we need more powerful means of abstraction
than natural languages provide.

3.2 Programming Languages
For programming computers, we want simple, unambiguous, regular, and eco-
nomical languages with powerful means of abstraction. A programming lan-
guage is a language that is designed to be read and written by humans to create programming

languageprograms that can be executed by computers.

Programming languages come in many flavors. It is difficult to simultaneously
satisfy all desired properties since simplicity is often at odds with economy. Ev-
ery feature that is added to a language to increase its expressiveness incurs a cost
in reducing simplicity and regularity. For the first two parts of this book, we use
the Scheme programming language which was designed primarily for simplic-
ity. For the later parts of the book, we use the Python programming language,
which provides more expressiveness but at the cost of some added complexity.

4Or is it people? What is the singular of people? What about peeps? Can you only have one peep?

38 3.2. Programming Languages

Another reason there are many different programming languages is that they
are at different levels of abstraction. Some languages provide programmers with
detailed control over machine resources, such as selecting a particular location
in memory where a value is stored. Other languages hide most of the details of
the machine operation from the programmer, allowing them to focus on higher-
level actions.

Ultimately, we want a program the computer can execute. This means at the
lowest level we need languages the computer can understand directly. At this
level, the program is just a sequence of bits encoding machine instructions.
Code at this level is not easy for humans to understand or write, but it is easy
for a processor to execute quickly. The machine code encodes instructions that
direct the processor to take simple actions like moving data from one place to
another, performing simple arithmetic, and jumping around to find the next in-
struction to execute.

For example, the bit sequence 1110101111111110 encodes an instruction in the
Intel x86 instruction set (used on most PCs) that instructs the processor to jump
backwards two locations. Since the instruction itself requires two locations of
space, jumping back two locations actually jumps back to the beginning of this
instruction. Hence, the processor gets stuck running forever without making
any progress.

Grace Hopper
Image courtesy Computer

History Museum (1952)
The computer’s processor is designed to execute very simple instructions like
jumping, adding two small numbers, or comparing two values. This means each
instruction can be executed very quickly. A typical modern processor can exe-
cute billions of instructions in a second.5

Until the early 1950s, all programming was done at the level of simple instruc-
tions. The problem with instructions at this level is that they are not easy for
humans to write and understand, and you need many simple instructions be-
fore you have a useful program.

In the early 1950s, Admiral Grace Hopper developed the first compilers. A com-
piler is a computer program that generates other programs. It translates an in-compiler

put program written in a high-level language that is easier for humans to create
into a program in a machine-level language that is easier for a computer to exe-
cute.

An alternative to a compiler is an interpreter. An interpreter is a tool that trans-interpreter

lates between a higher-level language and a lower-level language, but where a
compiler translates an entire program at once and produces a machine language
program that can be executed directly, an interpreter interprets the program a
small piece at a time while it is running. This has the advantage that we do notNobody believed

that I had a
running compiler

and nobody would
touch it. They told

me computers could
only do arithmetic.

Grace Hopper

have to run a separate tool to compile a program before running it; we can sim-
ply enter our program into the interpreter and run it right away. This makes it
easy to make small changes to a program and try it again, and to observe the
state of our program as it is running.

One disadvantage of using an interpreter instead of a compiler is that because
the translation is happening while the program is running, the program exe-

5A “2GHz processor” executes 2 billion cycles per second. This does not map directly to the num-
ber of instructions it can execute in a second, though, since some instructions take several cycles to
execute.

Chapter 3. Programming 39

cutes slower than a compiled program. Another advantage of compilers over
interpreters is that since the compiler translates the entire program it can also
analyze the program for consistency and detect certain types of programming
mistakes automatically instead of encountering them when the program is run-
ning (or worse, not detecting them at all and producing unintended results).
This is especially important when writing critical programs such as flight con-
trol software — we want to detect as many problems as possible in the flight
control software before the plane is flying!

Since we are more concerned with interactive exploration than with performance
and detecting errors early, we use an interpreter instead of a compiler.

3.3 Scheme
The programming system we use for the first part of this book is depicted in
Figure 3.1. The input to our programming system is a program written in a pro-
gramming language named Scheme. A Scheme interpreter interprets a Scheme
program and executes it on the machine processor.

Scheme was developed at MIT in the 1970s by Guy Steele and Gerald Sussman,
based on the LISP programming language that was developed by John McCarthy
in the 1950s. Although many large systems have been built using Scheme, it is
not widely used in industry. It is, however, a great language for learning about
computing and programming. The primary advantage of using Scheme to learn
about computing is its simplicity and elegance. The language is simple enough
that this chapter covers nearly the entire language (we defer describing a few
aspects until Chapter 9), and by the end of this book you will know enough to
implement your own Scheme interpreter. By contrast, some programming lan-
guages that are widely used in industrial programming such as C++ and Java
require thousands of pages to describe, and even the world’s experts in those

Figure 3.1. Running a Scheme program.

40 3.4. Expressions

languages do not agree on exactly what all programs mean.

Although almost everything we describe should work in all Scheme interpreters,
for the examples in this book we assume the DrScheme programming environ-
ment which is freely available from http://www.drscheme.org/. DrScheme in-
cludes interpreters for many different languages, so you must select the desired
language using the Language menu. The selected language defines the gram-
mar and evaluation rules that will be used to interpret your program. For all the
examples in this book, we use the language named Pretty Big.

3.4 Expressions
A Scheme program is composed of expressions and definitions (we cover defini-
tions in Section 3.5). An expression is a syntactic element that has a value.expression

The act of determining the value associated with an expression is called evalua-
tion. A Scheme interpreter, such as the one provided in DrScheme, is a machineevaluation

for evaluating Scheme expressions. If you enter an expression into a Scheme
interpreter, the interpreter evaluates the expression and displays its value.

Expressions may be primitives. Scheme also provides means of combination
for producing complex expressions from simple expressions. The next subsec-
tions describe primitive expressions and application expressions. Section 3.6
describes expressions for making procedures and Section 3.7 describes expres-
sions that can be used to make decisions.

3.4.1 Primitives
An expression can be replaced with a primitive:

Expression ::⇒ PrimitiveExpression

As with natural languages, primitives are the smallest units of meaning. Hence,
the value of a primitive is its pre-defined meaning.

Scheme provides many different primitives. Three useful types of primitives are
described next: numbers, Booleans, and primitive procedures.

Numbers. Numbers represent numerical values. Scheme provides all the kinds
of numbers you are familiar with including whole numbers, negative numbers,
decimals, and rational numbers.

Example numbers include:

150 0 −12

3.14159 3/4 999999999999999999999

Numbers evaluate to their value. For example, the value of the primitive expres-
sion 1120 is 1120.

Booleans. Booleans represent truth values. There are two primitives for repre-
senting true and false:

PrimitiveExpression ::⇒ true | false

Chapter 3. Programming 41

The meaning of true is true, and the meaning of false is false.6

Primitive Procedures. Scheme provides primitive procedures corresponding to
many common functions. Mathematically, a function is a mapping from inputs function

to outputs. For each valid input to the function, there is exactly one associated
output. For example, + is a procedure that takes zero or more inputs, each of
which must be a number. Its output is the sum of the values of the inputs. Table
3.1 describes some primitive procedures for performing arithmetic and compar-
isons on numbers.

Symbol Description Inputs Output

+ add zero or more
numbers

sum of the input numbers (0 if
there are no inputs)

∗ multiply zero or more
numbers

product of the input numbers (1 if
there are no inputs)

− subtract two numbers the value of the first number minus
the value the second number

/ divide two numbers the value of the first number
divided by the value of the second
number

zero? is zero? one number true if the input value is 0,
otherwise false

= is equal to? two numbers true if the input values have the
same value, otherwise false

< is less than? two numbers true if the first input value has
lesser value than the second input
value, otherwise false

> is greater than? two numbers true if the first input value has
greater value than the second input
value, otherwise false

<= is less than or
equal to?

two numbers true if the first input value is not
greater than the second input
value, otherwise false

>= is greater than or
equal to?

two numbers true if the first input value is not
less than the second input value,
otherwise false

Table 3.1. Selected Scheme Primitive Procedures.
All of these primitive procedures operate on numbers. The first four are the basic arith-
metic operators; the rest are comparison procedures. Some of these procedures are
defined for more inputs than just the ones shown here (e.g., the subtract procedure also
works on one number, producing its negation).

6In the DrScheme interpreter, #t and #f are used as the primitive truth values; they mean the
same thing as true and false. So, the value true appears as #t in the interactions window.

42 3.4. Expressions

3.4.2 Application Expressions
Most of the actual work done by a Scheme program is done by application ex-
pressions. The grammar rule for application is:

Expression ::⇒ ApplicationExpression
ApplicationExpression ::⇒ (Expression MoreExpressions)
MoreExpressions ::⇒ ε | Expression MoreExpressions

This rule generates a list of one or more expressions surrounded by parentheses.
The value of the first expression should be a procedure; the remaining expres-
sions are the inputs to the procedure.

For example, the expression (+ 1 2) is an ApplicationExpression, consisting of
three subexpressions. Although this example is probably simple enough that
you can probably guess that it evaluates to 3, we will demonstrate in detail how it
is evaluated by breaking down into its subexpressions using the grammar rules.
The same process will allow us to understand how any expression is evaluated.

Here is a parse tree for the expression (+ 1 2):

Expression

ApplicationExpression

ccccccccccccccccc

ggggggggg

[[[[[[[[[[[[[[[[[

]]]

(Expression MoreExpressions

ggggggggg

[[[[[[[[[[[[[[[[[
)

PrimitiveExpression Expression MoreExpressions

ggggggggg

WWWWWWWWW

+ PrimitiveExpression Expression MoreExpressions

1 PrimitiveExpression ε

2

Following the grammar rules, we replace Expression with ApplicationExpression
at the top of the parse tree. Then, we replace ApplicationExpression with (Ex-
pression MoreExpressions). The Expression term is replaced PrimitiveExpres-
sion, and finally, the primitive addition procedure +. This is the first subexpres-
sion of the application, so it is the procedure to be applied. The MoreExpres-
sions term produces the two operand expressions: 1 and 2, both of which are
primitives that evaluate to their own values. The application expression is eval-
uated by applying the value of the first expression (the primitive procedure +) to
the inputs given by the values of the other expressions. Following the meaning
of the primitive procedure, (+ 1 2) evaluates to 3 as expected.

The Expression nonterminals in the application expression can be replaced with
anything that appears on the right side of an expression rule, including an Ap-
plicationExpression. Hence, we can build up complex expressions like (+ (∗ 10

10) (+ 25 25)). Its parse tree is:

Chapter 3. Programming 43

Expression

ApplicationExpression

ccccccccccccccccc

ggggggggg

[[[[[[[[[[[[[[[[[

]]]

(Expression MoreExpressions

ggggggggg

[[[[[[[[[[[[[[[[[
)

PrimitiveExpression Expression MoreExpressions

ggggggggg

WWWWWWWWW

+ ApplicationExpression

jjjjjjj

TTTTTTT
Expression MoreExpressions

(∗ 10 10) ApplicationExpression

jjjjjjj

TTTTTTT
ε

(+ 25 25)

This tree is similar to the previous tree, except instead of the subexpressions
of the first application expression being simple primitive expressions, they are
now application expressions. (Instead of showing the complete parse tree for
the nested application expressions, we use triangles.)

To evaluate the output application, we need to evaluate all the subexpressions.
The first subexpression, +, evaluates to the primitive procedure. The second
subexpression, (∗ 10 10), evaluates to 100, and the third expression, (+ 25 25),
evaluates to 50. Now, we can evaluate the original expression using the values
for its three component subexpressions: (+ 100 50) evaluates to 150.

Exercise 3.1. Draw a parse tree for the Scheme expression

(+ 100 (∗ 5 (+ 5 5)))

and show how it would be evaluated.

Exercise 3.2. Predict how each of the following Scheme expressions is evalu-
ated. After making your prediction, try evaluating the expression in DrScheme.
If the result is different from your prediction, explain why the Scheme inter-
preter evaluates the expression as it does.

a. 1120

b. (+ 1120)

c. (+ (+ 10 20) (∗ 2 0))

d. (= (+ 10 20) (∗ 15 (+ 5 5)))

e. (zero? (− 15 (+ 5 5 (+ 2 3))))

f. +

g. (+ + <)

44 3.5. Definitions

Exercise 3.3. For each problem, construct a Scheme expression that calculates
the result and try evaluating it in DrScheme.

a. How many seconds are there in a year?

b. For how many seconds have you been alive?

c. For what fraction of your life have you been in school?

Exercise 3.4. Construct a Scheme expression to calculate the distance in inches
that light travels during the time it takes the processor in your computer to exe-
cute one cycle. (A meter is defined as the distance light travels in 1/299792458th

of a second in a vacuum. One meter is 100 centimeters, and one inch is de-
fined as 2.54 centimeters. Your processor speed is probably given in gigahertz
(GHz), which are 1,000,000,000 hertz. One hertz means once per second, so
1GHz means the processor executes 1,000,000,000 cycles per second. On a Win-
dows machine, you can find the speed of your processor by opening the Control

Panel (select it from the Start menu) and selecting System. Note that Scheme
performs calculations exactly, so the result will be displayed as a fraction. To see
a more useful answer, use (exact->inexact Expression) to convert the value of
the expression to a decimal representation.)

3.5 Definitions
Scheme provides a simple, yet powerful, mechanism for abstraction. A defini-
tion introduces a new name and gives it a value:

Definition ::⇒ (define Name Expression)

After a definition, the N ame in the definition is now associated with the value of
the expression in the definition.7 A definition is not an expression since it does
not evaluate to a value.

A name can be any sequence of letters, digits, and special characters (such as
−, >, ?, and !) that starts with a letter or special character. Examples of valid
names include a, Ada, Augusta-Ada, gold49, !yuck, and yikes!\%@\# . We don’t
recommend using some of these names in your programs, however! A good pro-
grammer will pick names that are easy to read, pronounce, and remember, and
that are not easily confused with other names.

After a name has been bound to a value by a definition, that name may be used
in an expression:

Expression ::⇒ NameExpression
NameExpression ::⇒ Name

The value of a NameExpression is the value associated with the N ame.

7Alert readers should be worried that we need a more precise definition of the meaning of defi-
nitions to know what it means for a value to be associated with a name. This informal notion will
serve us well for now, but we will need a more precise explanation of the meaning of a definition in
Chapter 9.

Chapter 3. Programming 45

For example, below we define speed-of-light to be the speed of light in meters
per second, define seconds-per-hour to be the number of seconds in an hour,
and use them to calculate the speed of light in kilometers per hour:

> (define speed-of-light 299792458)
> speed-of-light
299792458

> (define seconds-per-hour (∗ 60 60))
> (/ (∗ speed-of-light seconds-per-hour) 1000)
1079252848 4/5

3.6 Procedures
In Chapter 1 we defined a procedure as a description of a process. Scheme pro-
vides a way to define procedures that take inputs, carry out a sequence of ac-
tions, and produce an output. Section 3.4.1 introduced some of Scheme’s prim-
itive procedures. To construct complex programs, however, we need to be able
to create our own procedures.

Procedures are similar to mathematical functions in that they provide a map-
ping between inputs and outputs, but they are different from mathematical func-
tions in two key ways:

State. In addition to producing an output, a procedure may access and mod-
ify state. This means that even when the same procedure is applied to the
same inputs, the output produced may vary. Because mathematical func-
tions do not have external state, when the same function is applied to the
same inputs it always produces the same result. State makes procedures
much harder to reason about. In particular, it breaks the substitution model
of evaluation we introduce in the next section. We will ignore this issue un-
til Chapter 9, and focus until then only on procedures that do not involve
any state.

Resources. Unlike an ideal mathematical function, which provides an instan-
taneous and free mapping between inputs and outputs, a procedure re-
quires resources to execute before the output is produced. The most impor-
tant resources are space (memory) and time. A procedure may need space
to keep track of intermediate results while it is executing. Each step of a
procedure requires some time to execute. Predicting how long a procedure
will take to execute, and finding the fastest procedure possible for solving
some problem, are core problems in computer science. We will consider
this throughout this book, and in particular in Chapter 7. Even knowing if
a procedure will finish is a challenging problem. In Chapter 12 we will see
that it is impossible to solve in general.

For the rest of this chapter, we view procedures as idealized mathematical func-
tions: we consider only procedures that involve no state, and do not worry about
the resources our procedures require.

3.6.1 Making Procedures
Scheme provides a general mechanism for making a procedure:

46 3.6. Procedures

Expression ::⇒ ProcedureExpression
ProcedureExpression ::⇒ (lambda (Parameters) Expression)
Parameters ::⇒ ε | Name Parameters

Evaluating a ProcedureExpression produces a procedure that takes as inputs the
Parameters following the lambda. You can think of lambda as meaning “make a
procedure”. The body of the procedure is the Expression, which is not evaluated
until the procedure is applied.

A ProcedureExpression can replace an Expression. This means anywhere an Ex-
pression is used we can create a new procedure. This is very powerful since it
means we can use procedures as inputs to other procedures and create proce-
dures that return new procedures as their output!

Here are some example procedures:

(lambda (x) (∗ x x))
Procedure that takes one input, and produces the square of the input value
as its output.

(lambda (a b) (+ a b))
Procedure that takes two inputs, and produces the sum of the input values
as its output.

(lambda () 0)
Procedure that takes no inputs, and produces 0 as its output.

(lambda (a) (lambda (b) (+ a b)))
Procedure that takes one input (a), and produces as its output a procedure
that takes one input and produces the sum of that input at a as its output.
The procedure is a procedure that makes an adding procedure.

3.6.2 Substitution Model of Evaluation
For a procedure to be useful, we need to apply it. In Section 3.4.2, we saw the
syntax and evaluation rule for an ApplicationExpression when the procedure to
be applied is a primitive procedure. The syntax for applying a constructed pro-
cedure is identical to the syntax for applying a primitive procedure:

Expression ::⇒ ApplicationExpression
ApplicationExpression ::⇒ (Expression MoreExpressions)
MoreExpressions ::⇒ ε | Expression MoreExpressions

To understand how constructed procedures are evaluated, we need a new eval-
uation rule. In this case, the first Expression evaluates to a procedure that was
created using a ProcedureExpression, so the ApplicationExpression becomes:

ApplicationExpression ::⇒
((lambda (Parameters)Expression) MoreExpressions)

(The underlined part is the replacement for the ProcedureExpression.)

To evaluate the application, first evaluate the MoreExpressions in the applica-
tion expression. These expressions are known as the operands of the applica-
tion. The resulting values are the inputs to the procedure. There must be ex-
actly one expression in the MoreExpressions corresponding to each name in the

Chapter 3. Programming 47

parameters list. Next, associate the names in the Parameters list with the corre-
sponding operand values. Finally, evaluate the expression that is the body of the
procedure. Whenever any parameter name is used inside the body expression,
the name evaluates to the value of the corresponding input that is associated
with that name.

Example 3.1: Square

Consider evaluating the following expression:

((lambda (x) (∗ x x)) 2)

It is an ApplicationExpression where the first subexpression is the ProcedureEx-
pression, (lambda (x) (∗ x x)). To evaluate the application, we evaluate all the
subexpressions and apply the value of the first subexpression to the values of
the remaining subexpressions. The first subexpression evaluates to a procedure
that takes one parameter named x and has the expression body (∗ x x). There is
one operand expression, the primitive 2, that evaluates to 2.

To evaluate the application we bind the first parameter, x, to the value of the
first operand, 2, and evaluate the procedure body, (∗ x x). After substituting
the parameter values, we have (∗ 2 2). This is an application of the primitive
multiplication procedure. Evaluating the application results in the value 4.

The procedure in our example, (lambda (x) (∗ x x)), is a procedure that takes a
number as input and as output produces the square of that number. We can use
the definition mechanism (from Section 3.5) to give this procedure a name so
we can reuse it:

(define square (lambda (x) (∗ x x)))

This defines the name square as the procedure. After this, we can apply square
to any number:

> (square 2)
4

> (square 1/4)
1/16

> (square (square 2))
16

Example 3.2: Make adder

The expression

((lambda (a)
(lambda (b) (+ a b)))

3)

evaluates to a procedure that adds 3 to its input. Applying that procedure to 4,

(((lambda (a) (lambda (b) (+ a b))) 3)
4)

evaluates to 7. By using define, we can give these procedures sensible names:

48 3.7. Decisions

(define make-adder
(lambda (a)

(lambda (b) (+ a b))))

Then, (define add-three (make-adder 3)) defines add-three as a procedure that
takes one parameter and outputs the value of that parameter plus 3.

Abbreviated Procedure Definitions. Since we commonly define new proce-
dures, Scheme provides a condensed notation for defining a procedure8:

Definition ::⇒ (define (Name Parameters) Expression)

This incorporates the lambda invisibly into the definition, but means exactly the
same thing. For example,

(define square (lambda (x) (∗ x x)))

can be written equivalently as:

(define (square x) (∗ x x))

Exercise 3.5. Define a procedure, cube, that takes one number as input and pro-
duces as output the cube of that number.

Exercise 3.6. Define a procedure, compute-cost , that takes as input two num-
bers, the first represents that price of an item, and the second represents the
sales tax rate. The output should be the total cost, which is computed as the
price of the item plus the sales tax on the item, which is its price times the sales
tax rate. For example, (compute-cost 13 0.05) should evaluate to 13.65.

3.7 Decisions
To make more useful procedures, we need the actions taken to depend on the
input values. For example, we may want a procedure that takes two numbers as
inputs and evaluates to the greater of the two inputs. To define such a procedure
we need a way of making a decision. The IfExpression expression provides a way
of using the result of one expression to select which of two possible expressions
to evaluate:

Expression ::⇒ IfExpression
IfExpression ::⇒ (if ExpressionPredicate

ExpressionConsequent

ExpressionAlternate)

The IfExpression replacement has three Expression terms. For clarity, we give
each of them names as denoted by the Predicate, Consequent, and Alternate
subscripts. To evaluate an IfExpression, first evaluate the predicate expression,

8The condensed notation also includes a begin expression, which is a special form. We will not
need the begin expression until we start dealing with procedures that have side effects. We describe
the begin special form in Chapter 9.

Chapter 3. Programming 49

ExpressionPredicate. If it evaluates to any non-false value, the value of the IfEx-
pression is the value of ExpressionConsequent, the consequent expression, and the
alternate expression is not evaluated at all. If the predicate expression evalu-
ates to false, the value of the IfExpression is the value of ExpressionAlternate, the
alternate expression, and the consequent expression is not evaluated at all.

The predicate expression determines which of the two following expressions is
evaluated to produce the value of the IfExpression. If the value of the predicate
is anything other than false, the consequent expression is used. For example, if
the predicate evaluates to true, to a number, or to a procedure the consequent
expression is evaluated.

The if expression is a special form. This means that although it looks syntacti- special form

cally identical to an application (that is, it could be an application of a procedure
named if), it is not evaluated as a normal application would be. Instead, we have
a special evaluation rule for if expressions. The reason a special evaluation rule
is needed is because we do not want all the subexpressions to be evaluated. With
the normal application rule, all the subexpressions are evaluated first, and then
the procedure resulting from the first subexpression is applied to the values re-
sulting from the others. With the if special form evaluation rule, the predicate
expression is always evaluated first and only one of the following subexpressions
is evaluated depending on the result of evaluating the predicate expression.

This means an if expression can evaluate to a value even if evaluating one of its
subexpressions would produce an error. For example,

(if (> 3 4) (∗ + +) 7)

evaluates to 7 even though evaluating the subexpression (∗+ +) would produce
an error. Because of the special evaluation rule for if expressions, the conse-
quent expression is never evaluated.

Example 3.3: Bigger

Now that we have procedures, decisions, and definitions, we can understand the
bigger procedure from the beginning of the chapter. The definition,

(define (bigger a b) (if (> a b) a b))

is a condensed procedure definition. It is equivalent to:

(define bigger (lambda (a b) (if (> a b) a b)))

This defines the name bigger as the value of evaluating the procedure expression
(lambda (a b) (if (> a b) a b)). This is a procedure that takes two inputs, named
a and b. Its body is an if expression with predicate expression (> a b). The
predicate expression compares the value that is bound to the first parameter, a,
with the value that is bound to the second parameter, b, and evaluates to true if
the value of the first parameter is greater, and false otherwise. According to the
evaluation rule for an if expression, when the predicate evaluates to any non-
false value (in this case, true), the value of the if expression is the value of the
consequent expression, a. When the predicate evaluates to false, the value of
the if expression is the value of the alternate expression, b. Hence, our bigger
procedure takes two numbers as inputs and produces as output the greater of

50 3.8. Evaluation Rules

the two inputs.

Exercise 3.7. Follow the evaluation to evaluate the Scheme expression, (bigger 3

4) where bigger is the procedure defined above. (It is very tedious to follow all of
the steps (that’s why we normally rely on computers to do it!), but worth doing
once to make sure you understand the evaluation rules.)

Exercise 3.8. Define a procedure, xor , that implements the logical exclusive-or
operation. The xor function takes two inputs, and outputs true if exactly one of
those outputs has a true value. Otherwise, it outputs false. For example, (xor true
true) should evaluate to false and (xor (< 3 5) (= 8 8)) should evaluate to true.

Exercise 3.9. Define a procedure, abs, that takes a number as input and pro-
duces the absolute value of that number as its output. For example, (abs 3)
should evaluate to 3 and (abs −150) should evaluate to 150.

Exercise 3.10. Define a procedure, bigger-magnitude, that takes two inputs, and
outputs the value of the input with the greater magnitude (that is, absolute dis-
tance from zero). For example, (bigger-magnitude 5 −7) should evaluate to −7,
and (bigger-magnitude 9 −3) should evaluate to 9.

Exercise 3.11. Define a procedure, biggest , that takes three inputs, and produces
as output the maximum value of the three inputs. For example, (biggest 5 7 3)
should evaluate to 7. Find at least two different ways to define biggest , one using
bigger , and one without using it.

3.8 Evaluation Rules
Here we summarize the grammar rules and evaluation rules. Since each gram-
mar rule has an associated evaluation rule, we can determine the meaning of
any grammatical Scheme fragment by combining the evaluation rules corre-
sponding to the grammar rules followed to derive that fragment.

Program ::⇒ ε | ProgramElement Program
ProgramElement ::⇒ Expression | Definition

A program is a sequence of expressions and definitions.

Definition ::⇒ (define Name Expression)

A definition evaluates the expression, and associates the value of the
expression with the name.

Definition ::⇒ (define (Name Parameters) Expression)

Abbreviation for
(define Name (lambda Parameters) Expression)

Chapter 3. Programming 51

Expression ::⇒ PrimitiveExpression | NameExpression
| ApplicationExpression
| ProcedureExpression | IfExpression

The value of the expression is the value of the replacement
expression.

PrimitiveExpression ::⇒ Number | true | false | primitive procedure

Evaluation Rule 1: Primitives. A primitive expression evaluates to
its pre-defined value.

NameExpression ::⇒ Name

Evaluation Rule 2: Names. A name evaluates to the value associated
with that name.

ApplicationExpression ::⇒ (Expression MoreExpressions)

Evaluation Rule 3: Application. To evaluate an application
expression:

a. Evaluate all the subexpressions;

b. Then, apply the value of the first subexpression to the values of
the remaining subexpressions.

MoreExpressions ::⇒ ε | Expression MoreExpressions
ProcedureExpression ::⇒ (lambda (Parameters) Expression)
Parameters ::⇒ ε | Name Parameters

Evaluation Rule 4: Lambda. Lambda expressions evaluate to a
procedure that takes the given parameters and has the expression as
its body.

IfExpression ::⇒ (if ExpressionPredicate

ExpressionConsequent

ExpressionAlternate)

Evaluation Rule 5: If. To evaluate an if expression, (a) evaluate the
predicate expression; then, (b) if the value of the predicate
expression is a false value then the value of the if expression is the
value of the alternate expression; otherwise, the value of the if
expression is the value of the consequent expression.

The evaluation rule for an application (Rule 3b) uses apply to perform the ap-
plication. Apply is defined by the two application rules:

Application Rule 1: Primitives.
To apply a primitive procedure, just do it.

Application Rule 2: Constructed Procedures.
To apply a constructed procedure, evaluate the body of the procedure with
each parameter name bound to the corresponding input expression value.

Application Rule 2 uses the evaluation rules to evaluate the expression. Thus,
the evaluation rules are defined using the application rules, which are defined
using the evaluation rules! This appears to be a circular definition, but as with

52 3.9. Summary

the grammar examples, it has a base case. Some expressions evaluate without
using the application rules (e.g., primitive expressions, name expressions), and
some applications can be performed without using the evaluation rules (when
the procedure to apply is a primitive). Hence, the process of evaluating an ex-
pression will sometimes finish and when it does we end with the value of the
expression.9

3.9 Summary
At this point, we have covered enough of Scheme to write useful programs (even
if the programs we have seen so far seem rather dull). In fact (as we show in
Chapter 12), we have covered enough to express every possible computation!
We just need to combine these constructs in more complex ways to perform
more interesting computations. The next chapter (and much of the rest of this
book), focuses on ways to combine the constructs for making procedures, mak-
ing decisions, and applying procedures in more powerful ways.

9This does not guarantee that evaluation always finishes, however! The next chapter includes
some examples where evaluation never finishes.

