Programming

Exercise 3.1. Draw a parse tree for the Scheme expression (+ 100 (x 5 (+ 5 5))) and show how it
is evaluated.

Solution. The full parse tree for the expression is:
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The main subexpressions are evaluated as shown below to produce the final value of 150.
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Exercise 3.2. Predict how each of the following Scheme expressions is evaluated. After making
your prediction, try evaluating the expression in DrRacket. If the result is different from your
prediction, explain why the Scheme interpreter evaluates the expression as it does.

a. 1120
Solution. 1120

b. (+ 1120)

Solution. 1120
c. (+(+1020) (x20))

Solution. 30

(=(+1020) (x 15 (+55)))
Solution. #f

The #f symbol represents the Boolean value false. Since the two operand expressions for the
= have different values, the expression evaluates to #f.
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e. +
Solution. #<procedure:+>

The symbol + is a primitive expression that is the built-in procedure for addition.

f. (++<)

Solution. & +: expects type <number> as 1st argument, given: #<procedure:+>; other
arguments were: #<procedure: <>

The interpreter produces an error since the + procedure is only defined for operands that are
numbers. Since the value of the first argument is a procedure, there is a type error.

Exercise 3.3. For each question, construct a Scheme expression and evaluate it in DrRacket.

a. How many seconds are there in a year?

Solution. For non-leap years, there are 365 days in a year, 24 hours in a day, 60 minutes in an
hour, and 60 seconds in a minute: (x 60 60 24 365)

b. For how many seconds have you been alive?

Solution. The first number (e.g., 20 here) is the number of years you have been alive: (x 20 60
60 24 365)

c. For what fraction of your life have you been in school?

Solution. Let’s assume you are 20 years old and you've been in school for 15 years and in
the United States it is typical to have 180 school days in a year, and that each school day is
7 hours long. Then, we can compute the fraction of your life spent in school by dividing the
number of hours spent in school by the number of hours lived: (/ (x 15 180 7) (x 20 365 24)).
This evaluates to 63/584. Note that math in Scheme is exact, and it is represented as a rational
number. A more useful result is to convert it to a decimal number using the exact->inexact
procedure:

> (exact->inexact (/ (x 15180 7) (x 20 365 24)))

0.10787671232876712

Your answer, of course, will vary depending on how old you are, how many years you've spent
in school, and the length of your school year and day.

Exercise 3.4. Construct a Scheme expression to calculate the distance in inches that light trav-
els during the time it takes the processor in your computer to execute one cycle. (A meter is
defined as the distance light travels in 1/299792458"" of a second in a vacuum. Hence, light trav-
els at 299,792,458 meters per second. Your processor speed is probably given in gigahertz (GHz),
which are 1,000,000,000 hertz. One hertz means once per second, so 1 GHz means the processor
executes 1,000,000,000 cycles per second. On a Windows machine, you can find the speed of
your processor by opening the Control Panel (select it from the Start menu) and selecting Sys-
tem. Note that Scheme performs calculations exactly, so the result will be displayed as a fraction.
To see a more useful answer, use (exact->inexact Expression) to convert the value of the expres-
sion to a decimal representation.)

Solution. My computer is 2.33 GHz. Hence, one cycle takes (/ 1 2330000000) seconds. Light
travels 299792458 meters per second. So, in the time the processor executes a single cycle, light
travels
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> (exact->inexact (x 299792458 (/ 1 2330000000)))
0.12866629098712445

meters. This is equivalent to
> (exact->inexact (/ (x 100 (x 299792458 (/ 1 2330000000))) 2.54))
5.065602007367104

inches. This should give you some sense of how close the processor speed is to reaching physical
limits.

Exercise 3.5. Define a procedure, cube, that takes one number as input and produces as output
the cube of that number.

Solution.
(define cube (lambda (x) (x x x x)))
or:

(define (cube x) (* x x x))

Exercise 3.6. Define a procedure, compute-cost, that takes as input two numbers, the first rep-
resents that price of an item, and the second represents the sales tax rate. The output should be
the total cost, which is computed as the price of the item plus the sales tax on the item, which is
its price times the sales tax rate. For example, (compute-cost 13 0.05) should evaluate to 13.65.

Solution.

(define compute-cost
(lambda (price rate)
(+ price (x price rate))))

Another approach:
(define (compute-cost price rate)

(x price (4 1 rate)))

Exercise 3.7. Follow the evaluation rules to evaluate the Scheme expression:
(bigger 3 4)

where bigger is the procedure defined above. (It is very tedious to follow all of the steps (that’s
why we normally rely on computers to do it!), but worth doing once to make sure you understand
the evaluation rules.)

Exercise 3.8. Define a procedure, xor, that implements the logical exclusive-or operation. The
xor function takes two inputs, and outputs true if exactly one of those outputs has a true value.
Otherwise, it outputs false. For example, (xor true true) should evaluate to false and (xor (< 3 5)
(= 88)) should evaluate to true.

Solution. There are many possible ways to define xor. Here are two possibilities:

(define (xor a b)
(if a (not b) b))
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(define (xor a b)
(or (and a (not b)) (and (not a) b)))

Exercise 3.9. Define a procedure, absvalue, that takes a number as input and produces the
absolute value of that number as its output. For example, (absvalue 3) should evaluate to 3 and
(absvalue —150) should evaluate to 150.

Solution.
(define (absvalue v)
(if (<v0) (—v)v)

Note that Scheme provides a built-in function abs that implements the absolute value function.
Hence, the easiest way to define absvalue would be,

(define absvalue abs)

Exercise 3.10. Define a procedure, bigger-magnitude, that takes two inputs, and outputs the
value of the input with the greater magnitude (that is, absolute distance from zero). For example,
(bigger-magnitude 5 —7) should evaluate to —7, and (bigger-magnitude 9 —3) should evaluate to
9.

Solution. We use the absvalue procedure defined in the previous exercise:

(define (bigger-magnitude a b)
(if (> (absvalue a) (absvalue b)) a b))

Exercise 3.11. Define a procedure, biggest, that takes three inputs, and produces as output the
maximum value of the three inputs. For example, (biggest 5 7 3) should evaluate to 7. Find at
least two different ways to define biggest, one using bigger, and one without using it.

Solution. Our first solution uses the bigger procedure from Example 3.3:

(define (biggest a b c)
(bigger (bigger a b) c))

Another approach is to define an if expression:

(define (biggest a b c)
(if(>ab)
(if(>ac)ac
if(>bc) b))

We prefer the first version since it is shorter and easier to understand. This is a simple illustration
of the advantages of building up more complex procedures by combining simple ones.
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